Skip to main content
Log in

Growth of monolayer and trilayer of gold nanoparticles attached octadecanethiol films on hydrophilic silicon surface using Langmuir–Blodgett method

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Gold nanoparticles (AuNPs) are formed below the octadecanethiol (ODT) Langmuir monolayer and the nanoparticles attached ODT monolayer is deposited on hydrophilic silicon substrate using the conventional Langmuir–Blodgett (LB) technique. X-ray reflectivity and atomic force microscopy analysis confirm that effectively monolayer- and trilayer-like structures are developed on the solid surface for single up stroke and multiple numbers of up-down-up cycles of the substrate through the ODT layer. Transmission electron microscopy provides the size distribution of the deposited nanoparticles, while Fourier transform infrared study confirms the deposition of ODT layer and leaching of some thiol molecules due to multiple up/down strokes of the substrate. Effective growth of only single and double layers of AuNPs is possible on hydrophilic solid surface by the conventional LB method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Foster W J, Shih M C and Pershan P S 1996 J. Chem. Phys. 105 3307

    Article  CAS  Google Scholar 

  2. Weinbach S P, Weissbuch I, Kjaer K, Bouwman W G, Nielsen J A, Lahav M et al 1995 Adv. Mater. 7 857

    Article  CAS  Google Scholar 

  3. Brezesinski G, Dietrich A, Struth B, Bohm C, Bouwman W G, Kjaer K et al 1995 Chem. Phys. Lipids 76 145

    Article  CAS  Google Scholar 

  4. Kane S A 2002 Langmuir 18 9853

    Article  CAS  Google Scholar 

  5. Tronin A, Dubrovsky T, De N C, Gussoni A, Erokhin V and Nicolini C 1994 Thin Solid Films 238 127

    Article  CAS  Google Scholar 

  6. He S, Huang M, Ye W, Chen D, He S, Ding L et al 2014 J. Phys. Chem. B 118 12207

    Article  CAS  Google Scholar 

  7. Zhou Y and Wang B 2007 in H Nejo (ed) Nanostructures: fabrication and analysis (Berlin, Heidelberg: Springer) p 123

  8. Mayya K M, Jain N, Gole A, Langevin D and Sastry M 2004 J. Colloid Interface Sci. 270 133

    Article  CAS  Google Scholar 

  9. Tsai H J and Lee Y L 2009 Soft Matter 5 2962

    Article  CAS  Google Scholar 

  10. Soni S K, Das K, Bhowal A C, Sarmah R J, Fontaine P and Kundu S 2020 Chem. Phys. Lett. 754 137774

    Article  Google Scholar 

  11. Uysal A, Stripe B, Lin B, Meron M and Dutta P 2011 Phys. Rev. Lett. 107 115503

    Article  Google Scholar 

  12. Khomutov G B, Yakovenko S A, Yurova T V, Khanin V V and Soldatov E S 1997 Supramol. Sci. 4 349

    Article  CAS  Google Scholar 

  13. Kotov N A, Zaniquelli M E D, Meldrum F C and Fendler J H 1993 Langmuir 9 3710

    Article  CAS  Google Scholar 

  14. Erokhin V, Feigin L, Ivakin G, Klechkovskaya V, Lvov Y and Stiopina N 1991 Makromol. Chem. Macromol. Symp. 46 359

    Article  CAS  Google Scholar 

  15. Ravaine S, Fanucci G E, Seip C T, Adair J H and Talham D R 1998 Langmuir 14 708

    Article  CAS  Google Scholar 

  16. Myers D 2005 (ed) Surfactant science and technology (Hoboken, New Jersey: John Wiley & Sons, Inc.)

  17. Caruso R A and Antonietti M 2001 Chem. Mater. 13 3272

    Article  CAS  Google Scholar 

  18. Mann S, Burkett S L, Davis S A, Fowler C E, Mendelson N H, Sims S D et al 1997 Chem. Mater. 9 2300

    Article  CAS  Google Scholar 

  19. Raman N K, Anderson M T and Brinker C J 1996 Chem. Mater. 8 1682

    Article  CAS  Google Scholar 

  20. Byrd H, Pike J K and Talham D R 1993 Chem. Mater. 5 709

    Article  CAS  Google Scholar 

  21. Kundu S and Das A 2011 Chem. Phys. Lett. 508 80

    Article  CAS  Google Scholar 

  22. Kundu S and Bal J K 2011 J. Appl. Phys. 110 114302

    Article  Google Scholar 

  23. Das K and Kundu S 2014 J. Appl. Phys. 116 024316

    Article  Google Scholar 

  24. Kundu S 2012 J. Appl. Phys. 112 014323

    Article  Google Scholar 

  25. Rosoff M 2001 (ed) Nano-surface chemistry (New York: CRC Press)

  26. Pal S, John N S, Thomas P J, Kulkarni G U and Sanyal M K 2004 J. Phys. Chem. B 108 10770

    Article  CAS  Google Scholar 

  27. Lin B, Schultz D G, Lin X M, Li D, Gebhardt J, Meron M et al 2007 Thin Solid Films 515 5669

    Article  CAS  Google Scholar 

  28. Raveendran A, Dewolf C, Bu W, McWhirter S, Meron M, Lin B et al 2018 J. Phys. Chem. C 122 2975

    Article  CAS  Google Scholar 

  29. Chen L H, Hsu W P, Chan H W and Lee Y L 2014 Appl. Surf. Sci. 320 736

    Article  CAS  Google Scholar 

  30. Li W, Ren Y, Xu R, Ding H and Xi S 1998 Supramol. Sci. 5 603

    Article  CAS  Google Scholar 

  31. Xue Z H, Hu B B, Dai S X and Du Z L 2010 Mater. Chem. Phys. 123 278

    Article  CAS  Google Scholar 

  32. Hsiao F W, Lee Y L and Chang C H 2009 Colloids Surf. B Biointerfaces 73 110

    Article  CAS  Google Scholar 

  33. Chanachev A, Simeonova S, Georgiev P, Balashev K, Ivanova T and Panaiotov I 2016 Colloids Surf. A Physicochem. Eng. Asp. 508 1

    Article  CAS  Google Scholar 

  34. Gupta R K, Suresh K A, Guo R and Kumar S 2006 Anal. Chim. Acta 568 109

    Article  CAS  Google Scholar 

  35. Adachi S, Arai T and Kobayashi K 1996 J. Appl. Phys. 80 5422

    Article  CAS  Google Scholar 

  36. Bal J K, Kundu S and Hazra S 2010 Chem. Phys. Lett. 500 90

    Article  CAS  Google Scholar 

  37. Das K, Sah B K and Kundu S 2017 Phys. Rev. E 95 022804

    Article  Google Scholar 

  38. Horcas I, Fernandez R, Gomez R J M, Colchero J, Gomez H J and Baro A M 2007 Rev. Sci. Instrum. 78 013705

    Article  CAS  Google Scholar 

  39. Parratt L G 1954 Phys. Rev. 95 359

    Article  Google Scholar 

  40. Daillant J and Gibaud A 2009 (eds) X-ray and neutron reflectivity: principles and applications (Berlin, Heidelberg: Springer)

  41. Tolan M 1998 (ed) X-ray scattering from soft-matter thin films: materials science and basic research (Berlin, Heidelberg: Springer)

  42. Basu J K and Sanyal M K 2002 Phys. Rep. 363 1

    Article  CAS  Google Scholar 

  43. Kundu S, Datta A, Sanyal M K, Daillant J, Luzet D, Blot C et al 2006 Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 73 061602

    Article  CAS  Google Scholar 

  44. Kundu S, Datta A and Hazra S 2005 Langmuir 21 5894

    Article  CAS  Google Scholar 

  45. Cossaro A, Mazzarello R, Rousseau R, Casalis L, Verdini A, Kohlmeyer A et al 2008 Science 321 943

    Article  CAS  Google Scholar 

  46. Reith F, Etschmann B, Grosse C, Moors H, Benotmane M A, Monsieurs P et al 2009 Proc. Natl. Acad. Sci. 106 17757

    Article  CAS  Google Scholar 

  47. Zhao W, Kim M W, Wurm D B, Brittain S T and Kim Y T 1996 Langmuir 12 386

    Article  CAS  Google Scholar 

  48. Ghosh M A S and Hart E J 1968 in E J Hart (ed) Radiation Chemistry (Washington, DC: American Chemical Society) p 193

  49. Kurihara K, Fendler J H, Kizling J and Stenius P 1983 J. Am. Chem. Soc. 105 2574

    Article  CAS  Google Scholar 

  50. Yang S, Wang Y, Wang Q, Zhang R and Ding B 2007 Colloids Surf. A Physicochem. Eng. Asp. 301 174

    Article  CAS  Google Scholar 

  51. Hostetler M J, Stokes J J and Murray R W 1996 Langmuir 12 3604

    Article  CAS  Google Scholar 

  52. Sharma A, Singh B P and Gathania A K 2014 Indian J. Pure Appl. Phys. 52 93

    Google Scholar 

  53. Diaz M E, Johnson B, Chittur K and Cerro R L 2005 Langmuir 21 610

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Department of Science and Technology (DST), Ministry of Science, Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarathi Kundu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Sarmah, R.J. & Kundu, S. Growth of monolayer and trilayer of gold nanoparticles attached octadecanethiol films on hydrophilic silicon surface using Langmuir–Blodgett method. Bull Mater Sci 45, 208 (2022). https://doi.org/10.1007/s12034-022-02791-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-022-02791-5

Keywords

Navigation