Skip to main content
Log in

Sensitive SERS detection of Tobramycin using electrochemically synthesized silver nanoparticles

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Sensitive surface-enhanced Raman spectroscopy (SERS) substrates designed for drug sensing are in great interest due to the growing demand in environmental monitoring, disease therapies and chemical analysis. Here, spherical silver nanoparticles (Ag-NPs; ~8 nm) are synthesized via a simple electrochemical route and examined as SERS substrates for Tobramycin (TOBi) detection. The morphology and structure characterizations confirm the successful fabrication of Ag-NP. TOBi in diluted solution has a detection limit of 10−6 M, and the linear relationship between SERS intensity and TOBi amount is between 10−6 and 10−5 M. A strong SER signal with an enhancement factor of ~7.5 × 104 is observed. TOBi drug is for the first time investigated through Ag-based SERS detection.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Creighton J A, Blatchford C G and Albrecht M G 1979 J. Chem. Soc. Faraday Trans. 75 790

    Article  Google Scholar 

  2. Zhu D, Huang G, Zhang L, He Y, Xie H and Yu W 2019 Energy Environ. Mater. 2 22

    Article  CAS  Google Scholar 

  3. Lia Y, Duan W and Wei J 2021 Ceram. Int. 47 16870

    Article  Google Scholar 

  4. Khodashenasa B and Ghorban H R 2019 Arab. J. Chem. 12 1823

    Article  Google Scholar 

  5. Mallick K, Witcomb M J and Scurrell M S 2004 J. Mater. Sci. 39 4459

    Article  CAS  Google Scholar 

  6. Santos E B, Madalossi N V, Sigoli F A and Mazali I O 2015 New J. Chem. 39 2839

    Article  CAS  Google Scholar 

  7. Soliveri G, Ardizzone S, Yüksel S, May D C, Popp J, Schubert U S et al 2006 Phys. Chem. C 120 1237

    Article  Google Scholar 

  8. Yilmaz M, Yilmaz A, Karaman A, Aysin F and Aksakal O 2021 Talanta 225 121952

    Article  CAS  Google Scholar 

  9. Leong Q L, Cheng H-Y, Huang C-C, Tsai J-J, Lee C-W, Chen J-C et al 2022 J. Mol. Struct. 1254 132338

    Article  CAS  Google Scholar 

  10. Matsumoto C, Gen M, Matsuki A and Seto T 2022 Sci. Rep. 12 4511

    Article  CAS  Google Scholar 

  11. Pilotab R and Massaribc M 2021 Chem. Phys. 2 100014

    Google Scholar 

  12. Tzeng Y, Chen Y, Lai J and Huang B 2020 IEEE Trans. Nanotechnol. 19 25

    Article  CAS  Google Scholar 

  13. Stiufiuc R, Iacovita C, Lucaciu C M, Stiufiuc G, Dutu A G, Braescu C et al 2013 Nanoscale Res. Lett. 8 47

    Article  Google Scholar 

  14. Sun L, Zhang Z and Dang H 2003 Mater. Lett. 57 3874

    Article  CAS  Google Scholar 

  15. Schotten C, Nicholls T P, Bourne R A, Kapur N, Nguyen B N and Willans C E 2020 Green Chem. 22 3358

    Article  CAS  Google Scholar 

  16. Terry L R, Sanders S, Potoff R H, Kruel J W, Jain M and Guo H 2022 Anal. Sci. Adv. 3 113

    Article  CAS  Google Scholar 

  17. Sánchez L R, Blanco M C and Quintela M A L 2000 J. Phys. Chem. B 41 9683

    Article  Google Scholar 

  18. Yerga D M, Rama E C and García A C 2016 Anal. Chem. 7 3739

    Article  Google Scholar 

  19. Azimi S and Docoslis A 2022 Sensors (Basel) 22 3877

    Article  CAS  Google Scholar 

  20. Ikeda K, Suzuki S and Uosaki K 2013 J. Am. Chem. Soc. 46 17387

    Article  Google Scholar 

  21. Gao J, Zhang N, Ji D, Song H, Liu Y, Zhou L et al 2018 Small Methods 2 1800045

    Article  Google Scholar 

  22. Saleh T A, Shalalfeh M M A and Al-Saadi A A 2018 Sens. Actuat. B Chem. 254 1110

    Article  CAS  Google Scholar 

  23. Haddad A, Comanescu M A, Green O, Kubic T A and Lombardi J R 2018 Anal. Chem. 90 12678

    Article  CAS  Google Scholar 

  24. Hong K Y A, Lima de Albuquerque C D, Poppi R J and Brolo A G 2017 Anal. Chim. Acta 982 148

    Article  CAS  Google Scholar 

  25. Krause K M, Serio A W, Kane T R and Connolly L E 2016 Cold Spring Harb. Perspect. Med. 6 a027029

    Article  Google Scholar 

  26. Pauter K, Szultka-Młyńska M and Buszewski B 2020 Molecules (Basel) 25 2556

    Article  CAS  Google Scholar 

  27. McKeating K S, Couture M, Dinel M-P, Garneau-Tsodikova S and Masson J F 2016 Analyst 141 5120

    Article  CAS  Google Scholar 

  28. Fares N V, Medhat P M, Maraghy C M, Okeil E S and Ayad M F 2021 Chemosensors 9 52

    Article  CAS  Google Scholar 

  29. Gomez-Caballero L F, Pichardo-Molina J L and Basurto-Islas G 2022 Mater. Lett. 313 131718

    Article  CAS  Google Scholar 

  30. Goh C F, Yu H, Yong S S, Mhaisalkar S G, Boey F Y C and Teo P S 2005 Mater. Sci. Eng. B 117 153

    Article  Google Scholar 

  31. Biçer M and Şişman I 2010 Powder Technol. 198 279

    Article  Google Scholar 

  32. Zhang Q L, Yang Z M, Ding B J, Lan X Z and Guo Y J 2010 Trans. Nonferrous Met. Soc. China 20 240

    Article  Google Scholar 

  33. Ajitha B, Divya A, Harish G S and Reddy P S 2013 Res. J. Phys. Sci. 1 11

    Google Scholar 

  34. Janardhanan R, Karuppaiah M, Hebalkar N and Rao T N 2009 Polyhedron 28 2522

    Article  CAS  Google Scholar 

  35. Singh N, Siddiqui H, Kumar S, Goswami M, Kumar A, Sharda T et al 2022 Mater. Lett. 307 130976

    Article  CAS  Google Scholar 

  36. Kravets V G, Kabashin A V, Barnes W L and Grigorenko A N 2018 Chem. Rev. 118 5912

    Article  CAS  Google Scholar 

  37. Raza M, Kanwal Z, Rauf A, Sabri A, Riaz S and Naseem S 2016 Nanomaterials 6 74

    Article  Google Scholar 

  38. Agnihotri S, Mukherji S and Mukherji S 2014 RSC Adv. 4 3974

    Article  CAS  Google Scholar 

  39. Pal S, Tak Y K and Song J M 2007 Appl. Environ. Microbiol. 73 1712

    Article  CAS  Google Scholar 

  40. Amarjargal A, Tijing L D and Kim C S 2015 Bull. Mater. Sci. 38 267

    Article  CAS  Google Scholar 

  41. Stöckle R M, Suh Y D, Deckert V and Zenobi R 2000 Chem. Phys. Lett. 318 131

    Article  Google Scholar 

  42. Gen M and Chan C K 2017 Atmos. Chem. Phys. Discuss. 17 14025

    Article  CAS  Google Scholar 

  43. Moram S S B, Byram C and Soma V R 2020 Bull. Mater. Sci. 43 53

    Article  CAS  Google Scholar 

  44. Bharathi M S S, Byram C, Banerjee D, Sarma D, Barkakaty B and Soma V R 2021 Bull. Mater. Sci. 44 103

    Article  CAS  Google Scholar 

  45. Saleh T A, Al-Shalalfeh M M and Al-Saadi A A 2017 Mater. Res. Bull. 91 173

    Article  CAS  Google Scholar 

  46. Al-Shalalfeh M M, Onawole A T, Saleh T A and Al-Saadi A A 2017 Mater. Sci. Eng. C 76 356

    Article  CAS  Google Scholar 

  47. Chen N, Yuan Y, Lu P, Wang L, Zhang X, Chen H et al 2021 Biomed. Opt. Express 12 7673

    Article  CAS  Google Scholar 

  48. Tackman E C, Trujillo M J, Lockwood T-LE, Merga G, Lieberman M and Camden J P 2018 Anal. Methods 10 4718

    Article  CAS  Google Scholar 

  49. Pham T B N, Bui T T T, Tran V Q, Dang V Q, Hoang L N and Tran C K 2020 Appl. Nanosci. 10 703

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding under SYST scheme (SP/YO/2019/1554) from DST (Govt. of India). TEM analysis was performed at the analytical HRTEM laboratory, CSIR-AMPRI, Bhopal supported by CSIR under the facility creation project (MLP0110). Netrapal Singh acknowledges CSIR, New Delhi (File No. 31/041(0080)/2019-EMR-I), for SRF fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surender Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siddiqui, H., Singh, N., Khan, R. et al. Sensitive SERS detection of Tobramycin using electrochemically synthesized silver nanoparticles. Bull Mater Sci 45, 211 (2022). https://doi.org/10.1007/s12034-022-02790-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-022-02790-6

Keywords

Navigation