Skip to main content
Log in

Reduced graphene oxide derived from urea-assisted solution combustion route and its electrochemical performance

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Reduced graphene oxide (rGO) is synthesized from graphite oxide through urea-assisted solution combustion route. X-ray diffraction analysis reveals a decrease in the interplanar spacing (d002) value from 8.14 to 3.44 Å on combustion due to reduction. Number of graphitic layers decreases from 58 to 9 on combustion indicating efficient exfoliation. Scanning electron micrographs reveal substantial reduction in the lateral dimension of graphitic planes from greater than ~1μm to less than ~380 nm. Raman spectroscopy studies indicate an enhancement of defects in the rGO with an ID/IG ratio of 1.19. Diminishing intensity of vibrational modes of different oxygen functional groups in the Fourier transform infrared spectrum and higher carbon to oxygen ratio of 12.13 from X-ray photoelectron spectroscopy indicate excellent reduction. N1s X-ray photoelectron spectrum confirms nitrogen doping. Electrical conductivity of rGO is 38 S m−1. The sample as an active material in a three-electrode configuration with 6 M KOH electrolyte exhibits a capacitance of 75.1 F g−1 at a current density of 0.1 A g−1, and 63% of it is retained even at a current density of 10 A g−1. It also exhibits 103% of its initial capacitance after 1000 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Zhu Y, Murali S, Cai W, Li X, Suk J W, Potts J R et al 2010 Adv. Mater. 22 3906

    Article  CAS  Google Scholar 

  2. Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F et al 2008 Nano Lett. 8 902

    Article  CAS  Google Scholar 

  3. Song S, Shen H, Wang Y, Chu X, Xie J, Zhou N et al 2020 Colloids Surf. B Biointerfaces 185

  4. Agudosi E S, Abdullah E C, Numan A, Mubarak N M, Khalid M and Omar N 2020 Crit. Rev. Solid State Mater. Sci. 45 339

    Article  CAS  Google Scholar 

  5. Chua C K and Pumera M 2014 Chem. Soc. Rev. 43 291

    Article  CAS  Google Scholar 

  6. Hummers W S and Offeman R E 1958 J. Am. Chem. Soc. 80 1339

    Article  CAS  Google Scholar 

  7. Chen J, Yao B, Li C and Shi G 2013 Carbon N. Y. 64 225

    Article  CAS  Google Scholar 

  8. Yang S, Lohe M R, Müllen K and Feng X 2016 Adv. Mater. 28 6213

    Article  CAS  Google Scholar 

  9. Sengupta I, Chakraborty S, Talukdar M, Pal S K and Chakraborty S 2018 J. Mater. Res. 33 4113

    Article  CAS  Google Scholar 

  10. Sánchez-Campos D, Rodríguez-Lugo V, Sánchez-Vargas F C, Mendoza-Anaya D, Rodríguez E S, Alarcón L E et al 2020 Mater. Chem. Phys. 242 122325

    Article  CAS  Google Scholar 

  11. Ray S C 2015 Applications of graphene and graphene-oxide based nanomaterials (Norwich: William Andrew)

    Google Scholar 

  12. Kumar G P, Jawahar I N and Biju V 2021 J. Mater. Sci. Mater. Electron. 32 14919

    Article  CAS  Google Scholar 

  13. Liu Y Z, Chen C M, Li Y F, Li X M, Kong Q Q and Wang M Z 2014 J. Mater. Chem. A 2 5730

    Article  CAS  Google Scholar 

  14. Li Z, Zhang X, Tan H, Qi W, Wang L, Ali M C et al 2018 Adv. Funct. Mater. 28 1805026

    Article  CAS  Google Scholar 

  15. Indrawirawan S, Sun H, Duan X and Wang S 2015 J. Mater. Chem. A 3 3432

    Article  CAS  Google Scholar 

  16. Erri P, Pranda P and Varma A 2004 Ind. Eng. Chem. Res. 43 3092

    Article  CAS  Google Scholar 

  17. Maharana H S, Rai P K and Basu A 2017 J. Mater. Sci. 52 1089

    Article  CAS  Google Scholar 

  18. Huh S H 2014 Carbon N. Y. 78 617

    Article  CAS  Google Scholar 

  19. Chen D, Li L and Guo L 2011 Nanotechnology 22 325601

    Article  CAS  Google Scholar 

  20. Zhang J, Jiang J, Li H and Zhao X S 2011 Energy Environ. Sci. 4 4009

    Article  CAS  Google Scholar 

  21. Kim M C, Hwang G S and Ruoff R S 2009 J. Chem. Phys. 131

  22. Pimenta M A, Dresselhaus G, Dresselhaus M S, Cançado L G, Jorio A and Saito R 2007 Phys. Chem. Chem. Phys. 9 1276

    Article  CAS  Google Scholar 

  23. Nolan H, Mendoza-Sanchez B, Ashok Kumar N, McEvoy N, O’Brien S, Nicolosi V et al 2014 Phys. Chem. Chem. Phys. 16 2280

    Article  CAS  Google Scholar 

  24. Park S, An J, Potts J R, Velamakanni A, Murali S and Ruoff R S 2011 Carbon N. Y. 49 3019

    Article  CAS  Google Scholar 

  25. Shin H J, Kim K K, Benayad A, Yoon S M, Park H K, Jung I S et al 2009 Adv. Funct. Mater. 19 1987

    Article  CAS  Google Scholar 

  26. Chen Y, Zhang X, Zhang D, Yu P and Ma Y 2011 Carbon N. Y. 49 573

    Article  CAS  Google Scholar 

  27. Ambrosi A, Chua C K, Bonanni A and Pumera M 2012 Chem. Mater. 24 2292

    Article  CAS  Google Scholar 

  28. Lei Z, Lu L and Zhao X S 2012 Energy Environ. Sci. 5 6391

    Article  CAS  Google Scholar 

  29. Luo D, Zhang G, Liu J and Sun X 2011 J. Phys. Chem. C 115 11327

    Article  CAS  Google Scholar 

  30. Chen W, Yan L and Bangal P R 2010 Carbon N. Y. 48 1146

    Article  CAS  Google Scholar 

  31. Yang D, Velamakanni A, Bozoklu G, Park S, Stoller M, Piner R D et al 2009 Carbon N. Y. 47 145

    Article  CAS  Google Scholar 

  32. Ganguly A, Sharma S, Papakonstantinou P and Hamilton J 2011 J. Phys. Chem. C 115 17009

    Article  CAS  Google Scholar 

  33. Shen Y, Jing T, Ren W, Zhang J, Jiang Z G, Yu Z Z et al 2012 Compos. Sci. Technol. 72 1430

    Article  CAS  Google Scholar 

  34. Marcano D C, Kosynkin D V, Berlin J M, Sinitskii A, Sun Z, Slesarev A et al 2010 ACS Nano 4 4806

    Article  CAS  Google Scholar 

  35. Krishnan P and Biju V 2021 Phys. E Low-Dimensional Syst. Nanostruct. 126 114452

    Article  CAS  Google Scholar 

  36. Peng Y Y, Liu Y M, Chang J K, Wu C H, Der Ger M, Pu N W et al 2015 Carbon N. Y. 81 347

    Article  CAS  Google Scholar 

  37. Zhang D, Zhang X, Chen Y, Wang C and Ma Y 2012 Electrochim. Acta 69 364

    Article  CAS  Google Scholar 

  38. Stoller M D, Park S, Yanwu Z, An J and Ruoff R S 2008 Nano Lett. 8 3498

    Article  CAS  Google Scholar 

  39. Wang D, Min Y, Yu Y and Peng B 2014 J. Colloid Interface Sci. 417 270

    Article  CAS  Google Scholar 

  40. Eftekhari A 2018 J. Mater. Chem. A 6 2866

    Article  CAS  Google Scholar 

  41. Fan Z, Yan J, Wei T, Zhi L, Ning G, Li T et al 2011 Adv. Funct. Mater. 21 2366

    Article  CAS  Google Scholar 

  42. Pandit B, Dhakate S R, Singh B P and Sankapal B R 2017 Electrochim. Acta 249 395

    Article  CAS  Google Scholar 

  43. Fan L Q, Zhong J, Wu J H, Lin J M and Huang Y F 2014 J. Mater. Chem. A 2 9011

    Article  CAS  Google Scholar 

  44. Conway B E 2013 Electrochemical supercapacitors: scientific fundamentals and technological applications (USA: Springer)

    Google Scholar 

  45. Cheng Q, Tang J, Ma J, Zhang H and Qin L C 2011 Phys. Chem. Chem. Phys. 13 17615

    Article  CAS  Google Scholar 

  46. Ozkan C and Ozkan U 2019 Handbook of graphene vol 5 (Hoboken: Wiley)

    Google Scholar 

  47. Vivekchand S R C, Rout C S, Subrahmanyam K S, Govindaraj A and Rao C N R 2008 J. Chem. Sci. 120 9

    Article  CAS  Google Scholar 

  48. Dreyer D R, Murali S, Zhu Y, Ruoff R S and Bielawski C W 2011 J. Mater. Chem. 21 3443

    Article  CAS  Google Scholar 

Download references

Acknowledgements

PKG acknowledges University Grants Commission (UGC), Human Resources Development Ministry, Government of India, for financial assistance in the form of Junior Research Fellowship (Sr No. 2061651293). PK acknowledges the University of Kerala for financial assistance in the form of Research Fellowship. AMS acknowledges the Kerala State Council for Science, Technology and Environment, Kerala, India (KSCSTE), for financial assistance in the form of Junior Research Fellowship (No. 001/FSHP/-MAIN/2017/KSCSTE). INJ and BV acknowledge the University of Kerala, India, for funding under the project ‘Setting up of 2D Materials Lab’ and Kerala State Council for Science, Technology and Environment, Kerala, India (KSCSTE), for financial assistance under the SARD scheme (Grant No. KSCSTE SARD/003/2016). We thank the Central Laboratory and Instrumentation Facility (CLIF), University of Kerala, for XRD and XPS measurements, and Department of Optoelectronics, University of Kerala, for FESEM measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V Biju.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5513 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, G.P., Krishnan, P., Arsha, M.S. et al. Reduced graphene oxide derived from urea-assisted solution combustion route and its electrochemical performance. Bull Mater Sci 45, 170 (2022). https://doi.org/10.1007/s12034-022-02751-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-022-02751-z

Keywords

Navigation