Skip to main content
Log in

pH effect upon sol–gel processing of titanium butoxide and lithium acetate precursors on the characteristics of Li4Ti5O12 as an anode for lithium-ion batteries

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

This research investigates the effect of different precursor’s pH values on the fabrication of lithium titanate (Li4Ti5O12) via sol–gel processing and its characteristics as an anode for lithium-ion batteries. The precursor solution of lithium acetate was dropped into titanium butoxide at various initial pH values of 0.14, 0.39 and 0.69. The study of synthesis of Li4Ti5O12 in the extreme acid environment is rarely investigated. Thermogravimetry-differential thermal analyzer was used to examine the thermal profile of the dried Li4Ti5O12 precursor to determine the required sintering temperature, while the crystal structure and morphology of the sintered samples were characterized using an X-ray diffractometer and scanning electron microscope. The thermal analysis shows that the precursor should be sintered at 850°C to acquire pure spinel Li4Ti5O12 crystal. An investigation of the crystal structure shows that a higher purity of Li4Ti5O12 phase with smaller crystallite is obtainable in a more acidic condition. The resultant products contain an agglomerated and irregular morphology with non-uniform size distribution. These results show that the sample with the highest purity of Li4Ti5O12 provides the best electrochemical performance, with a specific capacity of 100 mAh g−1 at 0.1 C scanning rate and fast charging characteristics up to 10 C scanning rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Zhu G N, Liu H J, Zhuang J H, Wang C X, Wang Y G and Xia Y Y 2011 Energy Environ. Sci. 4 4016

    Article  CAS  Google Scholar 

  2. Song H, Jeong T G, Yun S W, Lee E K, Park S A and Kim Y T 2017 Sci. Rep. 7 43335

    Article  Google Scholar 

  3. Wu H B, Chen J S, Hng H H and Lou X W 2012 Nanoscale 4 2526

    Article  CAS  Google Scholar 

  4. Zaghib K, Dontigny M, Guerfi A, Charest P, Rodrigues I, Mauger A et al 2011 J. Power Sour. 196 3949

    Article  CAS  Google Scholar 

  5. Wang X, Liu D, Weng Q, Liu J, Liang Q and Zhang C 2015 NPG Asia Mater. 7 171

    Article  CAS  Google Scholar 

  6. Xue X, Yan H and Fu Y 2019 Solid State Ion. 335 1

    Article  CAS  Google Scholar 

  7. Zhang S, Ge X and Chen C 2017 Chin. Chem. Lett. 28 2274

    Article  CAS  Google Scholar 

  8. Sun B, Wang R, Ni L, Qiu S and Zhang Z 2018 Inorg. Chem. Commun. 93 10

    Article  CAS  Google Scholar 

  9. Shen L, Yuan C, Luo H, Zhang X, Xu K and Xia Y 2010 J. Mater. Chem. 20 6998

    Article  CAS  Google Scholar 

  10. Drezen T, Kwon N H, Bowen P, Teerlinck I, Isono M and Exnar I 2007 J. Power Sour. 174 949

    Article  CAS  Google Scholar 

  11. Yao W, Zhuang W, Ji X, Chen J, Lu X and Wang C 2016 Mater. Res. Bull. 75 204

    Article  CAS  Google Scholar 

  12. Zhu J, Duan R, Zhang Y and Zhu J 2016 Ceram. Int. 42 334

    Article  CAS  Google Scholar 

  13. Zhang E and Zhang H 2019 Ceram. Int. 45 7419

    Article  CAS  Google Scholar 

  14. Sloovere D D, Marchal W, Ulu F, Vranken T, Verheijen M, Bael M K V et al 2017 RSC Adv. 7 18745

    Article  Google Scholar 

  15. Nithya V D, Selvan R K, Vediappan K, Saminathan S and Lee C W 2012 Appl. Surf. Sci. 261 515

    Article  CAS  Google Scholar 

  16. Kuo Y C, Peng H T, Xiao Y and Lin J Y 2016 J. Solid State Electrochem. 20 1625

    Article  CAS  Google Scholar 

  17. Gockeln M, Pokhrel S, Meierhofer F, Glenneberg J and Kun R 2018 J. Power Sour. 374 97

    Article  CAS  Google Scholar 

  18. Gockeln M, Glenneberg J, Busse M, Pokhrel S, Mädler L and Kun R 2018 Nano Energy 49 564

    Article  CAS  Google Scholar 

  19. Meierhofer F, Li H, Gockeln M, Kun R, Grieb T, Rosenauer A et al 2017 ACS Appl. Mater. Interfaces 9 37760

    Article  CAS  Google Scholar 

  20. Kuo Y C and Lin J Y 2014 Electrochim. Acta 142 43

    Article  CAS  Google Scholar 

  21. Tsega M and Dejene F 2017 Heliyon 3 e00246

    Article  Google Scholar 

  22. Ibrahim S A and Sreekantan S 2011 Adv. Mater. Res. 173 184

    Article  CAS  Google Scholar 

  23. Ekemena O O, Patrick G N and Sreekanth B J 2015 J. Adv. Oxid. Technol. 18 253

    Google Scholar 

  24. Brinker C J and Scherer G W 2013 Sol-gel science: the physics and chemistry of sol-gel processing (Boston: Academic press)

    Google Scholar 

  25. Hanaor D A and Sorrell C C 2011 J. Mater. Sci. 46 855

    Article  CAS  Google Scholar 

  26. Shen C M, Zhang X G, Zhou Y K and Li H L 2003 Mater. Chem. Phys. 78 437

    Article  CAS  Google Scholar 

  27. Kumar S G and Rao K S R K 2014 Nanoscale 6 11574

    Article  CAS  Google Scholar 

  28. Waseda Y, Matsubara E and Shinoda K 2011 X-ray diffraction crystallography: introduction, examples and solved problems (Heidelberg: Springer)

    Book  Google Scholar 

  29. Grupp R, Nöthe M, Kieback B and Banhart J 2011 Nat. Commun. 2 298

    Article  CAS  Google Scholar 

  30. Park J S, Baek S H, Jeong Y I, Noh B Y and Kim J H 2013 J. Power Sour. 244 527

    Article  CAS  Google Scholar 

  31. Sudakar C, Subbanna G N and Kutty T R N 2004 J. Mater. Sci. 39 4271

    Article  CAS  Google Scholar 

  32. Selvan R K and Gedanken A 2009 Nanotechnology 20 105602

    Article  CAS  Google Scholar 

  33. Yuan T, Yu X, Cai R, Zhou Y and Shao Z 2010 J. Power Sour. 195 4997

    Article  CAS  Google Scholar 

  34. Luo G, He J, Song X, Huang X, Yu X, Fang Y et al 2015 J. Alloys Compd. 621 268

    Article  CAS  Google Scholar 

  35. Liu Y, Yan X, Xu B, Lan J, Yu Y, Yang X et al 2019 Chem. Eng. J. 361 1371

    Article  CAS  Google Scholar 

  36. Wang J 2000 Analytical electrochemistry 2nd edn. (New York: Wiley-VCH)

    Book  Google Scholar 

  37. Wolberg J 2006 Data analysis using the method of least squares: extracting the most information from experiments (Heidelberg: Springer)

    Google Scholar 

  38. Pohjalainen E, Rauhala T, Valkeapää M, Kallionen J and Kallio T 2015 J. Phys. Chem. C 119 2277

    Article  CAS  Google Scholar 

  39. Deng D, Kim M G, Lee J Y and Cho J 2009 Energy Environ. Sci. 2 818

    Article  CAS  Google Scholar 

  40. Bläubaum L, Röder F, Nowak C, Chan H S, Kwade A and Krewer U 2020 ChemElectroChem 7 4755

    Article  CAS  Google Scholar 

  41. Erdas A, Ozcan S, Guler M O and Akbulut H 2015 Acta Phys. Pol. A 127 1026

    Article  CAS  Google Scholar 

  42. Chen Z, Xu N, Li W, Zhao R, Dong Y, Liu J et al 2019 J. Mater. Chem. A 7 16347

    Article  CAS  Google Scholar 

  43. Wang Y Q, Gu L, Guo Y G, Li H, He X Q, Tsukimoto S et al 2012 JACS 134 7874

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to appreciate the financial support from the Directorate for Research and Community Services of Universitas Indonesia through the Doctoral Research Grant for International Publication Year 2019, under contract no.: NKB-0153/UN2.R3.1/HKP.05.00/2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akhmad Herman Yuwono.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Priyono, S., Sofyan, N., Dhaneswara, D. et al. pH effect upon sol–gel processing of titanium butoxide and lithium acetate precursors on the characteristics of Li4Ti5O12 as an anode for lithium-ion batteries. Bull Mater Sci 45, 147 (2022). https://doi.org/10.1007/s12034-022-02736-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-022-02736-y

Keywords

Navigation