Skip to main content

Advertisement

Log in

Accelerated potential-induced degradation technology for crystalline silicon cells

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Potential-induced degradation (PID) is recently recognized as one of the most important degradation mechanisms in crystalline silicon cells as well as in photovoltaic (PV) modules. The ability of solar cells to resist PID effect is one of the key indicators of product quality monitoring. Traditional PID testing methods are complex and require up to 96 h in treating. To accelerate the PID test, a rapid PID treatment technology was urgent for PV field, which can extremely decrease the time expense. Hence, we have introduced a novel rapid PID treating technology, which reduced the treatment time from nearly 100 h to less than 8 h. This technology was applying an electric field directly on the solar cells to simulate the PID process of the modules. The process was named as electric field treatment (EFT). The effect of the applied EFT voltage on the solar cells was investigated from 1 to 1.8 KV. The degradation rate of the solar cells increased with increase in EFT voltage. The result of the energy dispersive spectrometer showed that the sodium element was found in the shunt area of the cell. It indicated that the microscopic principle of the power loss of the cell caused by the EFT was in accordance with that of the traditional PID. The electric performances of the cells treated by EFT showed that the PID test time can be accelerated to less than 8 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Pingel S, Frank O, Winkler M, Daryan S, Geipel T, Hoehne H et al 2010 Proceeding of 35th PVSC p 2817

  2. Malachi R, Schönberger S, Mayer J and Kasemann M 2014 Proceeding of 29th EUPVSEC p 2323

  3. Luo W, Khoo Y S, Hacke P, Naumann V, Lausch D, Harvey S P et al 2017 Energy Environ. Sci. 10 43

    Article  CAS  Google Scholar 

  4. Voswinckel S, Manz P, Schmidt C, Wesselak V, Fokuhl E and Trautmann B 2013 Proceeding of 28th EUPVSEC p 2478

  5. Xiong Z, Walsh T M and Aberle A G 2011 Energy Procedia 8 384

    Article  CAS  Google Scholar 

  6. Berghold J, Frank O, Hoehne H, Pingel S, Richardson B and Winkler M 2010 Proceeding of 25th EUPVSEC p 3753

  7. Ndiaye A, Charki A, Kobi A, Kébé C M, Ndiaye P A and Sambou V 2013 Sol. Energy 96 140

    Article  Google Scholar 

  8. Hacke P, Terwilliger K, Smith R, Glick S, Pankow J, Kempe M et al 2011 Proceeding of 37th PVSC p 814

  9. Schütze M, Junghänel M, Koentopp M B, Cwikla S, Friedrich S, Müller J W et al 2011 Proceeding of 37th PVSC p 821

  10. Naumann V, Lausch D, Graff A, Werner M, Swatek S, Bauer J et al 2013 Phys. Status Solidi RRL 7 315

    Article  CAS  Google Scholar 

  11. Naumann V, Lausch D, Hähnel A, Bauer J, Breitenstein O, Graff A et al 2014 Sol. Energy Mater. Sol. Cells 120 383

    Article  CAS  Google Scholar 

  12. Naumann V, Lausch D, Großer S, Werner M, Swatek S, Hagendorf C et al 2013 Energy Procedia 33 76

    Article  CAS  Google Scholar 

  13. Carolus J, De Ceuninck W and Daenen M 2017 Proceeding of IRPS p 2F-5

  14. Swanson R, Cudzinovic M, DeCeuster D, Desai V, Jürgens J, Kaminar N et al 2005 Proceeding of PVSEC-15 p 473

  15. Koch S, Nieschalk D, Berghold J, Wendlandt S, Krauter S and Grunow P et al 2012 Proceeding of 27th EUPVSEC p 1985

  16. Fuyuki T and Kitiyanan A 2009 Appl. Phys. A: Mater. Sci. Process. 96 189

    Article  CAS  Google Scholar 

  17. Breitenstein O, Khanna A, Augarten Y, Bauer J, Wagner J M and Iwig K 2010 Phys. Status Solidi RRL 4 7

    Article  CAS  Google Scholar 

  18. Dost G, Höffler H and Greulich J M 2021 Phys. Status Solidi A 218 2000546

    Article  CAS  Google Scholar 

  19. Würfel P, Trupke T, Puzzer T, Schäffer E, Warta W and Glunz S 2007 J. Appl. Phys. 101 123110

    Article  Google Scholar 

  20. Fuyuki T, Kondo H, Yamazaki T, Takahashi Y and Uraoka Y 2005 Appl. Phys. Lett. 86 262108

    Article  Google Scholar 

  21. Hacke P, Kempe M, Terwilliger K, Glick S, Call N, Johnston S et al 2010 Proceeding of 25th EUPVSEC p 3760

  22. Naumann V, Klemens I and Christian H 2013 Proceeding of 28th EUPVSEC p 2994

  23. Ziebarth B, Mrovec M, Elsässer C and Gumbsch P 2014 J. Appl. Phys. 116 093510

    Article  Google Scholar 

  24. Kapur J, Stika K M, Westphal C S, Norwood J L and Hamzavytehrany B 2014 IEEE J. Photovolt. 5 219

    Article  Google Scholar 

  25. Lausch D, Naumann V, Breitenstein O, Bauer J, Graff A, Bagdahn J et al 2014 IEEE J. Photovolt. 4 834

    Article  Google Scholar 

  26. Gou X, Li X, Yu J, Wang S, Zhang X, Zhou S et al 2017 Phys. Status Solidi A 214 1700006

    Article  Google Scholar 

Download references

Acknowledgements

We thank Wuxi Suntech Power Co., Ltd. for providing the test silicon cells. This research was supported by the National Natural Science Foundation of China (Grant No. 61804066), China Postdoctoral Science Foundation (2020M671602), Jiangsu Postdoctoral Science Foundation (2020K143B) and The innovation team project of Zhejiang Province (2019R01012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi Xi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Q., Li, M., Xi, X. et al. Accelerated potential-induced degradation technology for crystalline silicon cells. Bull Mater Sci 45, 94 (2022). https://doi.org/10.1007/s12034-022-02681-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-022-02681-w

Keywords

Navigation