Skip to main content
Log in

Interdependency among electro-optic characteristics and absorption coefficient of homeotropically aligned liquid crystal considering Beer’s law theory

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

In the present study, interdependency among electro-optic (E-O) characteristics and absorption coefficient of homeotropically aligned liquid crystal (HALC) considering Beer’s law theory has been studied. Specifically, HALC cells were prepared using uniform dispersion of ZnO nanoparticles into the nematic liquid crystal without applying any surface treatment to the substrates. Then azo dichroic dye (orange) was added in a fixed concentration to the prepared nanoparticles dispersed LC mixture. The morphological and absorption characteristics of prepared HALC cells were found to be improved with the addition of azo dichroic dye. The optical textures observed at macroscopic and microscopic levels are in correspondence with each other and showed excellent OFF/ON switching with magnificently dark and bright views. Moreover, HALC cells doped with azo dichroic dye exhibited a higher value of absorption coefficient with an improved contrast ratio. Thus, a good consistency was observed among experimentally observed E-O characteristics and theoretically measured absorption coefficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Chinky, Dogra A R, Sharma V, Gahrotra R, Malik P and Kumar P 2020 AIP Conf. Proc. 2220 090011

  2. Chinky, Kumar P, Sharma V, Gahrotra R, Malik P and Raina K K 2019 AIP Conf. Proc. 2142 130005

  3. Chinky Kumar P, Sharma V, Malik P and Raina K K 2019 J. Mol. Struct. 1196 866

    Article  Google Scholar 

  4. Shadt M 2015 Liq. Cryst. 42 646

    Google Scholar 

  5. Oh-e M and Kondo K 1997 Jpn. J. Appl. Phys. 36 6798

    Article  CAS  Google Scholar 

  6. Lee S H, Lee S L and Kim H Y 1998 Appl. Phys. Lett. 73 2881

    Article  CAS  Google Scholar 

  7. Takeda A, Kataoka S, Sasaki T, Chida H, Tsuda H, Ohmuro K et al 1998 SID Int. Symp. Dig. Tech. 29 1077

    Article  Google Scholar 

  8. Lee G D, Son J H and Choi Y H 2007 Appl. Phys. Lett. 90 033509

  9. Lee S H, Bhattacharyya S S, Jin H S and Jeong K U 2012 J. Mater. Chem. 22 11893

    Article  CAS  Google Scholar 

  10. Lee W K, Choi Y S, Kang Y G, Sung J, Seo D S and Park C 2011 Adv. Funct. Mater. 21 3843

    Article  CAS  Google Scholar 

  11. Oh-e M and Kondo K 1996 Appl. Phys. Lett. 69 623

    Article  CAS  Google Scholar 

  12. Kang Y G, Kim H J, Park H G, Kim B Y and Seo D S 2012 J. Mater. Chem. 22 15969

    Article  CAS  Google Scholar 

  13. Lu R, Wu S T and Lee S H 2008 Appl. Phys. Lett. 92 051114

  14. Kumar P, Oh S Y, Baliyan V K, Kundu S, Lee S H and Kang S W 2018 Opt. Express 26 8385

    Article  CAS  Google Scholar 

  15. Yun H J, Jo M H, Jang I W, Lee S H, Ahn S H and Jin H H 2012 Liq. Cryst. 39 1141

    Article  CAS  Google Scholar 

  16. Yu I H, Song I S, Lee J Y and Lee S H 2006 J. Phys. D: Appl. Phys. 39 2367

    Article  CAS  Google Scholar 

  17. Hunter J T, Pal S K and Abbott N L 2010 ACS Appl. Mater. Interfaces 2 1857

    Article  CAS  Google Scholar 

  18. Xu M, Yang D K, Bos P J, Jin X, Harris F W and Cheng S Z D 1998 SID Dig. 29 139

    Article  Google Scholar 

  19. Nakamura M, Hashimoto Y, Shinomiya T and Mizushima S 2005 Sharp Kabushiki Kaisha (Osaka, JP), United States US7463328B2

  20. Koenig G M, Gettelfinger B T, De Pablo J J and Abbott N L 2008 Nano Lett. 8 2362

    Article  CAS  Google Scholar 

  21. Zhao D Y, Zhou W, Cui X P, Tian Y, Guo L and Yang H 2011 Adv. Mater. 23 5779

    Article  CAS  Google Scholar 

  22. Chen S H, Chou T R, Chiang Y T and Chao C Y 2017 Mol. Cryst. Liq. Cryst. 646 107

    Article  CAS  Google Scholar 

  23. Jeng S C, Kuo C W, Wang H L and Liao C C 2007 Appl. Phys. Lett. 91 061112

  24. Hwang S J, Jeng S C, Yang C Y, Kuo C W and Liao C C 2009 J. Phys. D: Appl. Phys. 42 025102

  25. Qi H and Hegmann T 2008 J. Mater. Chem. 18 3288

    Article  CAS  Google Scholar 

  26. Qi H and Hegmann T 2006 J. Mater. Chem. 16 4197

    Article  CAS  Google Scholar 

  27. Jeng S C, Hwang S J and Yang C Y 2009 Opt. Lett. 34 455

    Article  CAS  Google Scholar 

  28. Fang G J, Shi Y, Maclennan J E, Clark N A, Farrow M J and Walba D M 2010 Langmuir 26 17482

    Article  CAS  Google Scholar 

  29. Janning J L 1972 Appl. Phys. Lett. 21 173

    Article  CAS  Google Scholar 

  30. Yi Y, Farrow M J, Korblova E, Walba D M and Furtak T E 2009 Langmuir 25 997

    Article  CAS  Google Scholar 

  31. Lim Y J, Lee J H, Lee G Y, Jo M, Kim E J, Kim T H et al 2021 J. Mol. Liq. 340 117302

  32. Son S R and Lee J H 2020 Crystals 10 913

    Article  CAS  Google Scholar 

  33. Son S R, An J, Choi J W, Kim S, Park J and Lee J H 2021 Mater. Today Commun. 28 102539

  34. Song I H, Jeong H C, Lee J H, Won J, Kim D H, Lee D W et al 2021 Adv. Opt. Mater. 9 2001639

    Article  CAS  Google Scholar 

  35. Iwanaga H, Naito K and Effenberger F 2000 Liq. Cryst. 27 115

    Article  CAS  Google Scholar 

  36. Pelzl G, Zaschke H and Demus D 1985 Displays 6 141

    Article  CAS  Google Scholar 

  37. Wolarz E, Moryson H and Bauman D 1992 Displays 13 171

    Article  CAS  Google Scholar 

  38. Bauman D, Mykowska E and Wolarz E 1998 Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A 321 333

  39. Chen Z H and Swager T M 2007 Org. Lett. 9 997

    Article  CAS  Google Scholar 

  40. Iwanaga H and Aiga F 2011 Liq. Cryst. 38 135

    Article  CAS  Google Scholar 

  41. Seki H, Shishido C, Yasui S and Uchida T 1982 Jpn. J. Appl. Phys. Part 1 191

    Article  Google Scholar 

  42. Wu J J, Wang C M and Chen W Y L 1998 Jpn. J. Appl. Phys. 37 6434

    Article  CAS  Google Scholar 

  43. Sharma V and Kumar P 2017 Physica B 524 118

    Article  CAS  Google Scholar 

  44. Kumar P, Sharma V and Raina K K 2018 J. Mol. Liq. 251 407

    Article  CAS  Google Scholar 

  45. Sharma V, Kumar P, Chinky, Malik P and Raina K K 2020 J. Appl. Polym. Sci. 137 48745

Download references

Acknowledgement

Pankaj Kumar gratefully acknowledges the financial support by SERB, Department of Science and Technology (New Delhi), Government of India, under the research project number EMR/2017/005282.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pankaj Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chinky, Kumar, P., Dogra, A.R. et al. Interdependency among electro-optic characteristics and absorption coefficient of homeotropically aligned liquid crystal considering Beer’s law theory. Bull Mater Sci 45, 85 (2022). https://doi.org/10.1007/s12034-022-02667-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-022-02667-8

Keywords

Navigation