Skip to main content
Log in

Study on structural and optical properties of thermally evaporated MoO3 thin films

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Molybdenum trioxide (MoO3) thin films are grown on ITO-coated glass substrates by thermal deposition technique under the presence of oxygen partial pressure (PO2) about 2 × 10–3 mbar at various substrate temperatures to enhance electrochromic efficiency. Even at room temperature, the experimental films were crystalline, and crystallinity increased as the substrate temperature (Ts) was raised to 150°C. It is noted that the uniform spherical structure was transformed to a needle-like structure at Ts = 150°C. The transmittance of the films improved with substrate temperature, and corresponding bandgap values were measured. The films grown at Ts = 150°C reported the highest colouration efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Madhuri K V, Srinivasa Rao K, Uthanna S, Naidu B S and Hussain O M 2001 J. Indian Inst. Sci. 81 653

    CAS  Google Scholar 

  2. Scarminio J, Lourenco A and Gorenstein A 1997 Thin Solid Films 302 66

    Article  CAS  Google Scholar 

  3. Thomas C A 1976 ECS J. Solid State Sci. Technol. 123 527

    Google Scholar 

  4. Patil R S, Uplane M D and Patil P S 2008 Int. J. Electrochem. Sci. 3 259

    CAS  Google Scholar 

  5. Sivakumar R, Manisankar P, Jayachandran M and Sanjeeviraja C 2006 Sol. Energy Mater. Sol. Cells 90 2438

    Article  CAS  Google Scholar 

  6. Madhuri K V and Ashrit P V 2014 Int. J. Eng. Technol. 3 245

    Article  CAS  Google Scholar 

  7. Granqvist C G 1995 Handbook of inorganic electrochromic materials (Amsterdam: Elsevier)

    Google Scholar 

  8. Ferroni M, Guidi V, Martinelli G, Sacerdoti M, Nelli P and Sberveglieri G 1997 Thin Solid Films 307 148

    Article  CAS  Google Scholar 

  9. Comini E, Faglia G, Sbervoglieri G, Cantalini C, Passacantando M, Santucci S et al 2000 Sens. Actuators B 68 168

    Article  CAS  Google Scholar 

  10. Yao D D, Ou J Z, Latham K, Zhuiykov S, O’Mullane A P and Kalantar-zadeh K 2012 Cryst. Growth Des. 12 1865

    Article  CAS  Google Scholar 

  11. Zhou J, Lin N, Wang L, Zhang K, Zhu Y and Qian Y 2015 J. Mater. Chem. A 3 7463

    Article  CAS  Google Scholar 

  12. Ashrith P 2017 Transition metal oxide thin films-based chromogenics and devices 1st Edn (Amsterdam, Netherlands; Cambridge, MA, United States: Elsevier)

    Google Scholar 

  13. Lampert C M and Granqvist C G 1990 SPIE Institute series IS4 Proceedings of the SPIE Vol. 10304 (Bellingham, WA: SPIE Opt. Engr. Press)

    Google Scholar 

  14. Gaigneaux E M, Fukui K and Iwasawa Y 2000 Thin Solid Films 374 49

    Article  CAS  Google Scholar 

  15. Wang J, Matsubara I, Murayama N, Woosuck S and Izu N 2006 Thin Solid Films 514 329

    Article  CAS  Google Scholar 

  16. Li W, Cheng F, Tao Z and Chen J 2006 J. Phys. Chem. B 110 119

    Article  CAS  Google Scholar 

  17. Hosseini S H, Saghafi M and Heshmati-Manesh S 2012 Mater. Manuf. Process. 27 1271

    Article  CAS  Google Scholar 

  18. Arfaoui A, Touihri S, Mhamdi A, Labidi A and Manoubi T 2015 Appl. Surf. Sci. 357 1089

    Article  CAS  Google Scholar 

  19. Pandeeswari R and Jayaprakash B G 2014 Biosens. Bioelectron. 53 182

    Article  CAS  Google Scholar 

  20. Julien C and Nazri G A 1994 Solid-state batteries materials design and optimization (Boston, London: Kluwer Academic Publishers)

    Book  Google Scholar 

  21. Sian T S and Reddy G B 2004 Sol. Energy Mater. Sol. Cells 82 375

    Article  CAS  Google Scholar 

  22. Al-Kuhaili M F, Durrani S M A and Khawaja E E 2002 Thin Solid Films 408 188

    Article  CAS  Google Scholar 

  23. Sabhapathi V K, Hussian O M, Ramakrishana Reddy K T, Uthanna S, Naidu B S and Reddy P J 1995 Phys. Status Solidi (a) 148 167

    Article  CAS  Google Scholar 

  24. Lin S Y, Chen Y C, Wang C M, Hsieh P T and Shih S C 2009 Appl. Surf. Sci. 255 3868

    Article  CAS  Google Scholar 

  25. Ramana C V and Julien C M 2006 Chem. Phys. Lett. 428 114

    Article  CAS  Google Scholar 

  26. Ferreira F F, Cruz T G S, Fantini M C A, Tabacniks M H, De Castro S C, Morais J et al 2000 Solid State Ion. 137 357

    Article  Google Scholar 

  27. Okumu J, Koerfer F, Salinga C, Pedersen T P and Wuttig M 2006 Thin Solid Films 515 1327

    Article  CAS  Google Scholar 

  28. Mohamed S H and Venkataraj S 2007 Vacuum 81 636

    Article  CAS  Google Scholar 

  29. Guerrero R M, Garcia J R V, Santes V and Gomez E 2007 J. Alloys Compd. 434 701

    Article  CAS  Google Scholar 

  30. Boudoud L, Benramdane N, Desfeux R, Khelifa B and Mathieu C 2006 Catal. Today 113 230

    Article  CAS  Google Scholar 

  31. Hsu C S, Chan C C, Huang C T, Peng C H and Hsu W C 2008 Thin Solid Films 516 4839

    Article  CAS  Google Scholar 

  32. Donald M Mattox 2010 Handbook of physical vapour deposition (PVD) processing 2 edn, Elsevier (Amsterdam: William Andrew Applied Science Printers)

  33. Kazikawa Y 2011 Thin film growth, physics, materials science applications Ist edn, Part 1 (Woodhead Pub. Ltd.)

  34. Subbarayudu S, Madhavi V and Uthanna S 2014 Int. J. Mater. Sci. 4 78

    Article  Google Scholar 

  35. Tauc J 1974 Optical properties of amorphous semiconductors, amorphous and liquid semiconductors (London and New York: Springer), p 159

    Book  Google Scholar 

  36. Cardenas R, Torres J and Alfonso J E 2005 Thin Solid Films 478 146

    Article  CAS  Google Scholar 

  37. Subbarayudu S, Madhavi V and Uthanna S 2013 Adv. Mater. Lett. 4 637

    Article  CAS  Google Scholar 

  38. De Castro I A, Datta R S, Ou J Z, Castellanos-Gomez A, Sriram S and Daeneke T 2017 Adv. Mater. 29 1701619

    Article  CAS  Google Scholar 

  39. Dixit D and Madhuri K V 2019 Mater. Today: Proc. 19 2688

    CAS  Google Scholar 

  40. Sivakumar R, Gopinath C S, Jayachandran M and Sanjeeviraja C 2007 Curr. Appl. Phys. 7 76

    Article  Google Scholar 

  41. Sivakumar R, Gopalakrishnan R, Jayachandran M and Sanjeeviraja C 2007 Curr. Appl. Phys. 7 51

    Article  Google Scholar 

  42. Ohring M 1992 The Materials science of thin films 1st edn. (San Diego, CA: Academic Press)

    Google Scholar 

  43. Joannopoulos J D, Johnson S C, Winn N and Meade R D 2008 Photonic crystals: molding the flow of light 2nd edn. (New Jersey: Princeton University Press)

    Google Scholar 

  44. Morin F J 1959 Phys. Rev. Lett. 3 34

    Article  CAS  Google Scholar 

  45. Kuzmin A and Purans J 1993 J. Phys.: Condens. Matter 5 2333

    CAS  Google Scholar 

  46. Chen H-C, Jan D-J, Chen C-H and Huang K-T 2013 Electrochim. Acta 93 307

    Article  CAS  Google Scholar 

  47. Madhavi V, Kondaiah P, Hussain O M and Uthanna S 2014 Physica B 454 141

    Article  CAS  Google Scholar 

  48. Patil C E, Tarwal N L, Jadhav P R, Shinde P S, Deshmukh H P, Karanjkar M M et al 2014 Curr. Appl. Phys. 14 389

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K V Madhuri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madhuri, K.V., Dixit, D. Study on structural and optical properties of thermally evaporated MoO3 thin films. Bull Mater Sci 45, 83 (2022). https://doi.org/10.1007/s12034-022-02664-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-022-02664-x

Keywords

Navigation