Skip to main content
Log in

Correlating the microstructural and optical properties of vanadium ion-doped ZnO nanocrystals

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

This article deals with the synthesis, structural and optical characterizations of vanadium ion-doped ZnO nanoparticles. Four nanosized samples with a generic composition Zn1–xVxO (x = 0.00, 0.02, 0.04 and 0.06) were prepared using standard co-precipitation method. X-ray diffraction studies confirmed the existence of hexagonal wurtzite crystal structure and phase purity of prepared samples. Mean crystallites size within the range of 25 ± 3 nm was obtained from Scherrer’s formula. The compressive microstrain in the pure ZnO sample as obtained from Williamson–Hall plot ensured the presence of vacancies inside the nanocrystals. The surface morphology of doped ZnO nanocrystals was studied using field-emission scanning electron microscope image. Undoped ZnO nanoparticles showed a strong optical absorption near 390 nm. A redshift in direct bandgaps with increasing vanadium ions in ZnO matrix was noticed. Vanadium ions were present in three different oxidation states (+2, +3 and +4) within the host ZnO structure as obtained from X-ray photoelectron spectra. Photoluminescence studies also detected the existence of both zinc and oxygen vacancies in the synthesized nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Zhang F, Cui H and Zhang W 2015 Vacuum 119 131

    Article  CAS  Google Scholar 

  2. Ahmed S 2017 Results Phys. 7 604

    Article  Google Scholar 

  3. Kafle B, Acharya S, Thapa S and Poudel S 2016 Ceram. Int. 42 1133

    Article  CAS  Google Scholar 

  4. Fabbiyola S, JohnKennedya L, Ratnaji T, Vijaya J J, Aruldoss U and Bououdin M 2016 Ceram. Int. 42 1588

    Article  CAS  Google Scholar 

  5. Andrade G R S, Nascimento C C, Silva Júnior E C, Mendes D T S L and Gimenez I F 2017 J. Alloys Compd. 710 557

    Article  CAS  Google Scholar 

  6. Ariyakkani P, Suganya L and Sundaresan B 2017 J. Alloys Compd. 695 3467

    Article  CAS  Google Scholar 

  7. Gwozdz K, Placzek-Popko E, Zielony E, Paradowska K M, Pietruszka R, Witkowski B S et al 2017 J. Alloys Compd. 708 247

    Article  CAS  Google Scholar 

  8. Mhamdi A, Saafi I, Hendi A A, Amlouk A, Boubaker K and Amlouk M 2017 J. Alloys Compd. 691 545

    Article  CAS  Google Scholar 

  9. Hingorani S, Pillai V, Kumar P, Muntai M S and Shah D O 1993 Mater. Res. Bull. 28 1303

    Article  CAS  Google Scholar 

  10. Sakohara S, Ishida M and Anderson M A 1998 J. Phys. Chem. B 102 10169

    Article  CAS  Google Scholar 

  11. Zhao X, Zhang S C, Li C, Zheng B and Gu H 1997 J. Mater. Synth. Process. 5 227

    CAS  Google Scholar 

  12. Ueda K, Tabata H and Kawai T 2001 Appl. Phys. Lett. 79 988

    Article  CAS  Google Scholar 

  13. Venkatesan M, Fitzgerald C B, Lunney J G and Coey J M D 2004 Phys. Rev. Lett. 93 177206

    Article  CAS  Google Scholar 

  14. Ozgur U, Alivov Y I, Liu C, Teke A, Reshchikov M A, Dogan S et al 2005 J. Appl. Phys. 98 41301

    Article  Google Scholar 

  15. Jung S W, An S J, Yi G C, Jung C U, Lee S I and Cho S 2007 Appl. Phys. Lett. 80 4561

    Article  Google Scholar 

  16. Lawes G, Risbud A S, Ramirez A P and Seshadri R 2005 Phys. Rev. B 71 45201

    Article  Google Scholar 

  17. Park M S and Min B I 2003 Phys. Rev. B 68 224436

    Article  Google Scholar 

  18. Heo Y W, Ivill M P, Ip K, Norton D P, Pearton S J, Kelly J G et al 2004 Appl. Phys. Lett. 84 2292

    Article  CAS  Google Scholar 

  19. Tahir N, Hussain S T, Usman M, Hasanain S K and Mumtaz A 2009 Appl. Surf. Sci. 255 8506

    Article  CAS  Google Scholar 

  20. Gupta M K, Lee J H, Lee K Y and Kim S W 2013 ACS Nano 7 8932

    Article  CAS  Google Scholar 

  21. Ftouhi H, El-Jouad Z, Jbilou M, Diani M and Addou M 2019 Eur. Phys. J.: Appl. Phys. 87 10301

    Google Scholar 

  22. Kawashima T, Abe D and Washio K 2017 Mater. Sci. Semicond. Process. 70 213

    Article  CAS  Google Scholar 

  23. Ghoul J E I 2016 J. Mater. Sci. Mater. Electron 27 2159

    Article  Google Scholar 

  24. Abaira R, Buffagani E, Matoussi A, Khmakhem H and Ferrari C 2015 Superlattice Microst. 86 438

    Article  CAS  Google Scholar 

  25. Chang H, Nikolov J, Kim S K, Jang H D, Lim S and Kim D J 2011 J. Nanosci. Nanotech. 11 681

    Article  CAS  Google Scholar 

  26. Mallick A and Basak D 2018 Prog. Mater. Sci. 96 86

    Article  CAS  Google Scholar 

  27. Roy S, Ghosh M P and Mukherjee S 2021 Appl. Phys. A 127 451

    Article  CAS  Google Scholar 

  28. Ghosh M P and Mukherjee S 2019 J. Am. Ceram. Soc. 102 7509

    Article  CAS  Google Scholar 

  29. Gupta S, Choubey R K, Sharma K K, Ghosh M P, Kar M and Mukherjee S 2019 Semicon. Sci. Tech. 34 105006

    Article  CAS  Google Scholar 

  30. Chen L, Mashimo T, Omurzak E, Okudera H, Iwamoto C and Yoshiasa A 2011 J. Phys. Chem. C 115 9370

    Article  CAS  Google Scholar 

  31. Sharma P K, Dutta R K and Pandey A C 2009 J. Magn. Magn. Mater. 321 4001

    Article  CAS  Google Scholar 

  32. Morkoc H and Ozgur U 2009 Zinc oxide—fundamentals, materials and device technology (1st edn.) (Weinheim: Wiley-VCH Publishers)

    Book  Google Scholar 

  33. Mandal D, Sharma L K and Mukherjee S 2016 Appl. Phys. A 122 1033

    Article  Google Scholar 

  34. Yogamalara R, Srinivasan R, Vinu A, Ariga K and Bose A C 2009 Solid State Commun. 149 1919

    Article  Google Scholar 

  35. Hall W H 1949 Proc. Phys. Soc. Sect. A 62 741

    Article  Google Scholar 

  36. Nath D, Singh F and Das R 2020 Mater. Chem. Phys. 239 122021

    Article  CAS  Google Scholar 

  37. Izumi F and Ikeda T 2015 Annual. Rep. Adv. Ceram. Res. 3 33

    Google Scholar 

  38. Biesinger M C, Lau L W M, Gerson A R and Smart R S C 2010 Appl. Surf. Sci. 257 887

    Article  CAS  Google Scholar 

  39. Silversmit G, Depla D, Poelman H, Marin G B and Gryse R D 2004 J. Electron Spectrosc. Relat. Phenomen. 135 167

    Article  CAS  Google Scholar 

  40. Kennedy J, Murmu P P, Leveneur J, Markwitz A and Futter J 2016 Appl. Surf. Sci. 367 52

    Article  CAS  Google Scholar 

  41. Ghosh M P and Mukherjee S 2020 J. Magn. Magn. Mater. 498 166185

    Article  Google Scholar 

  42. Willander M, Nur O, Sadaf J R, Qadir M I, Zaman S, Zainelabdin A et al 2010 Materials 3 2643

    Article  CAS  Google Scholar 

  43. Lee M K and Tu H F 2007 J. Appl. Phys. 101 26103

    Article  Google Scholar 

  44. Wei X Q, Man B Y, Liu M, Xue C S, Zhuang H Z and Yang C 2007 Physica B 388 145

    Article  CAS  Google Scholar 

  45. Zhao L, Lian J S, Liu Y H, Jiang Q and Nonferr T 2008 Metal. Soc. 18 145

    CAS  Google Scholar 

  46. Roro K T, Dangbegnon J K, Sivaraya S, Leitch A W R and Botha J R 2008 J. Appl. Phys. 103 053516

    Article  Google Scholar 

  47. Borseth T M, Svensson B G, Kuznetsov A Y, Klason P, Zhao Q X and Willander M 2006 Appl. Phys. Lett. 89 262112

    Article  Google Scholar 

  48. Cheng W, Wu P, Zou X and Xiao T 2006 J. Appl. Phys. 100 054311

    Article  Google Scholar 

  49. Alaria J, Bouloudenine M, Schmerber G, Colis S, Dinia A, Turek P et al 2006 J. Appl. Phys. 99 08M118

    Article  Google Scholar 

  50. Vanheusden K, Seager C H, Warren W L, Tallant D R and Voigt J A 1996 Appl. Phys. Lett. 68 403

    Article  CAS  Google Scholar 

  51. Lin B, Fu Z and Jia Y 2001 Appl. Phys. Lett. 79 943

    Article  CAS  Google Scholar 

  52. Dijken A V, Meulenkamp E A, Vanmakelbergh D and Meijerink A 2000 J. Phys. Chem. B 104 1715

    Article  Google Scholar 

  53. Zhao Q X, Klason P, Willander M, Zhong H M, Lu W and Yang J H 2005 Appl. Phys. Lett. 87 211912

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samrat Mukherjee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kinra, S., Ghosh, M.P., Mohanty, S. et al. Correlating the microstructural and optical properties of vanadium ion-doped ZnO nanocrystals. Bull Mater Sci 45, 65 (2022). https://doi.org/10.1007/s12034-021-02650-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-021-02650-9

Keywords

Navigation