Abstract
Titanium dioxide (TiO2) nanoparticles were synthesised by the modified sol–gel method at different calcination temperatures. Samples were characterized using X-ray diffraction (XRD), high-resolution transmission microscopy, scanning electron microscopy, energy dispersive X-ray analysis (EDAX), Fourier transform infrared (FTIR) spectroscopy, Brunauer, Emmett and Teller surface area analyzer (BET) and diffuse reflectance spectroscopy (DRS). Phase transformation of TiO2 nanoparticles from anatase to rutile phase with an increase in calcination temperature from 573 to 1173 K was observed from XRD analysis. Detailed structural analysis using size–strain plot and Halder–Wagner method was done for all samples. The formation of TiO2 nanoparticles was confirmed from FTIR and EDAX spectra. The TEM image of the sample calcined at 673 K showed non-spherical shaped particles having particle sizes 13.16 ± 3.35 nm. The bandgap energy calculated from DRS decreases with an increase in calcination temperature, which supports phase transformation observed in XRD analysis. The photocatalytic degradation efficiency was evaluated by monitoring the degradation of Congo red (CR) azo dye under UV light and natural sunlight. The degradation of CR dye was confirmed by analysing the FTIR spectrum of the degraded sample. The sample calcined at 673 K, in the pure anatase phase, exhibited the highest photocatalytic activity.
Similar content being viewed by others
References
Kiernan J A 2001 Biotech. Histochem. 76 261
Benkhaya S, Harfi A E and Harfi S E 2018 Appl. J. Environ. Eng. Sci. 3 311
Purkait M K, Maiti A, Gupta D S and De S 2007 J. Hazard. Mater. 145 287
Ventura-Camargo B D C and Marin-Morales M A 2013 Text. Light Ind. Sci. Technol. 2 84
Kant R 2012 Nat. Sci. 04 22
Mishra S, Chowdhary P and Bharagava R N 2018 (ed) Emerging and eco-friendly approaches for waste management 1 1
Deng Y and Zhao R 2015 Curr. Pollut. Rep. 1 167
Akira F and Kenichi H 1972 Nature 238 37
Moma J and Baloyi J 2019 Photocatal.—Appl. Attrib. 1 37
Hunge Y M, Yadav A A and Mathe V L 2018 J. Mater. Sci. Mater. Electron. 29 6183
Noman M T, Ashraf M A and Ali A 2019 Environ. Sci. Pollut. Res. 26 3262
Perego C and Villa P 1997 Catal. Today 34 281
Gupta S M and Tripathi M 2012 Cent. Eur. J. Chem. 10 279
Venkatachalam N, Palanichamy M and Murugesan V 2007 Mater. Chem. Phys. 104 454
Thomas M, Naikoo G A, Sheikh M U D, Bano M and Khan F 2016 J. Photochem. Photobiol. A Chem. 327 33
Kim D J, Hahn S H, Oh S H and Kim E J 2002 Mater. Lett. 57 355
Cullity B D 1978 (ed) Elements of X-ray diffraction 29 162
Rogers K D and Daniels P 2002 Biomaterials 23 2577
Shah A H and Rather M A 2020 Mater. Today Proc. 44 482
Phromma S, Wutikhun T, Kasamechonchung P, Eksangsri T and Sapcharoenkun C 2020 Appl. Sci. 10 993
Khalifa Z S 2017 RSC Adv. 7 30295
Prince and Stalick 1992 Proc. NIIST Conf. 846 110
Sapna, Budhiraja N, Kumar V and Singh S K 2018 J. Adv. Phys. 6 492
Al-Tabbakh A A, Karatepe N, Al-Zubaidi A B, Benchaabane A and Mahmood N B 2019 Int. J. Energy Res. 43 1903
Ibrahim D M and Abu-Ayana Y M 2008 Mater. Chem. Phys. 111 326
Velumani S, Mathew X, Sebastian P J, Narayandass S K and Mangalaraj D 2003 Sol. Energy Mater. Sollar Cells 76 347
Spurr R A and Myers H 1957 Anal. Chem. 29 760
Ahadi S, Moalej N S and Sheibani S 2019 Solid State Sci. 96 105975
Klinghoffer N B, Castaldi M J and Nzihou A 2012 Ind. Eng. Chem. Res. 51 13113
Singh R and Dutta S 2018 Adv. Powder Technol. 29 211
Hanaor D A H, Chironi I, Karatchevtseva I and Triani G 2012 Adv. Appl. Ceram. 111 149
Ren Y, Zhao L, Zou Y, Song L, Dong N and Wang J 2019 Nanomaterials 9 1
León A, Reuquen P, Garín C, Segura R, Vargas P, Zapata P et al 2017 Appl. Sci. 7 1
Koysuren H N 2018 Catalysts 8 499
Cychosz K A and Thommes M 2018 Engineering 4 559
Kubelka P 1948 J. Opt. Soc. Am. 38 330
López R and Gómez R 2012 J. Sol-Gel Sci. Technol. 61 1
Werner E and Deniz M 2016 Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 173 965
Patil S M, Deshmukh S P, More K V, Shevale V B, Mullani S B, Dhodamani A G et al 2018 Mater. Chem. Phys. 225 247
Yang H, Zhang K, Shi R, Li X, Dong X and Yu Y 2006 J. Alloys Compd. 413 302
Luttrell T, Halpegamage S, Tao J, Kramer A, Sutter E and Batzill M 2015 Sci. Rep. 4 1
Xie X and Gao L 2009 Curr. Appl. Phys. 9 S185
Sadegh H, Ali G A M, Gupta V K, Makhlouf A S H, Ghoshekandi R S, Nadagouda M N et al 2017 J. Nanostruct. Chem. 7 1
Kim E Y, Kim D S and Ahn B T 2009 Bull. Korean Chem. Soc. 30 193
Ibrahim S M, Badawy A A and Essawy H A 2019 J. Nanostruct. Chem. 9 281
Nosaka Y and Nosaka A Y 2017 Chem. Rev. 117 11302
Mha R and Alhamidi J 2018 Adv. J Food Sci. Technol. 1 1
Yan H, Wang X, Yao M and Yao X 2013 Prog. Nat. Sci. Mater. Int. 23 402
Wu H, Ma J, Zhang C and He H 2014 Res. J. Environ. Sci. 26 673
Batzill M 2011 Energy Environ. Sci. 4 3275
Pawar M, Sendoǧdular S T and Gouma P 2018 J. Nanomater. 2018 13
Matsumoto Y 1996 J. Solid State Chem. 126 227
Moon S A, Salunke B K, Saha P, Deshmukh A R and Kim B S 2018 Korean J. Chem. Eng. 35 702
Souza E D, Fulke A B, Mulani N, Ram A, Asodekar M, Narkhede N et al 2017 Environ. Earth Sci. 76 721
Mall D, Srivastava V C, Kumar G V A and Mishra I M 2006 Colloids Surf. A Physicochem. Eng. Asp. 278 175
Kosmulski M 2002 Adv. Colloid Interface Sci. 99 255
Acknowledgements
We would like to acknowledge DST-SAIF, Cochin and CLIF, the University of Kerala for instrumentation support. Gopika M S acknowledges Junior Research Fellowship [AcEVI(4)/37275/JRF/2019] from the University of Kerala.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Gopika, M.S., Jayasudha, S. & Nair, P.B. Phase transformation induced structural, optical and photocatalytic investigations of TiO2 nanoparticles. Bull Mater Sci 45, 71 (2022). https://doi.org/10.1007/s12034-021-02647-4
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s12034-021-02647-4