Skip to main content
Log in

Phase transformation induced structural, optical and photocatalytic investigations of TiO2 nanoparticles

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Titanium dioxide (TiO2) nanoparticles were synthesised by the modified sol–gel method at different calcination temperatures. Samples were characterized using X-ray diffraction (XRD), high-resolution transmission microscopy, scanning electron microscopy, energy dispersive X-ray analysis (EDAX), Fourier transform infrared (FTIR) spectroscopy, Brunauer, Emmett and Teller surface area analyzer (BET) and diffuse reflectance spectroscopy (DRS). Phase transformation of TiO2 nanoparticles from anatase to rutile phase with an increase in calcination temperature from 573 to 1173 K was observed from XRD analysis. Detailed structural analysis using size–strain plot and Halder–Wagner method was done for all samples. The formation of TiO2 nanoparticles was confirmed from FTIR and EDAX spectra. The TEM image of the sample calcined at 673 K showed non-spherical shaped particles having particle sizes 13.16 ± 3.35 nm. The bandgap energy calculated from DRS decreases with an increase in calcination temperature, which supports phase transformation observed in XRD analysis. The photocatalytic degradation efficiency was evaluated by monitoring the degradation of Congo red (CR) azo dye under UV light and natural sunlight. The degradation of CR dye was confirmed by analysing the FTIR spectrum of the degraded sample. The sample calcined at 673 K, in the pure anatase phase, exhibited the highest photocatalytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. Kiernan J A 2001 Biotech. Histochem. 76 261

    Article  CAS  Google Scholar 

  2. Benkhaya S, Harfi A E and Harfi S E 2018 Appl. J. Environ. Eng. Sci. 3 311

    Google Scholar 

  3. Purkait M K, Maiti A, Gupta D S and De S 2007 J. Hazard. Mater. 145 287

    Article  CAS  Google Scholar 

  4. Ventura-Camargo B D C and Marin-Morales M A 2013 Text. Light Ind. Sci. Technol. 2 84

    Google Scholar 

  5. Kant R 2012 Nat. Sci. 04 22

    CAS  Google Scholar 

  6. Mishra S, Chowdhary P and Bharagava R N 2018 (ed) Emerging and eco-friendly approaches for waste management 1 1

  7. Deng Y and Zhao R 2015 Curr. Pollut. Rep. 1 167

    Article  CAS  Google Scholar 

  8. Akira F and Kenichi H 1972 Nature 238 37

    Article  Google Scholar 

  9. Moma J and Baloyi J 2019 Photocatal.—Appl. Attrib. 1 37

  10. Hunge Y M, Yadav A A and Mathe V L 2018 J. Mater. Sci. Mater. Electron. 29 6183

    Article  CAS  Google Scholar 

  11. Noman M T, Ashraf M A and Ali A 2019 Environ. Sci. Pollut. Res. 26 3262

    Article  CAS  Google Scholar 

  12. Perego C and Villa P 1997 Catal. Today 34 281

    Article  CAS  Google Scholar 

  13. Gupta S M and Tripathi M 2012 Cent. Eur. J. Chem. 10 279

    CAS  Google Scholar 

  14. Venkatachalam N, Palanichamy M and Murugesan V 2007 Mater. Chem. Phys. 104 454

    Article  CAS  Google Scholar 

  15. Thomas M, Naikoo G A, Sheikh M U D, Bano M and Khan F 2016 J. Photochem. Photobiol. A Chem. 327 33

    Article  CAS  Google Scholar 

  16. Kim D J, Hahn S H, Oh S H and Kim E J 2002 Mater. Lett. 57 355

    Article  Google Scholar 

  17. Cullity B D 1978 (ed) Elements of X-ray diffraction 29 162

  18. Rogers K D and Daniels P 2002 Biomaterials 23 2577

    Article  CAS  Google Scholar 

  19. Shah A H and Rather M A 2020 Mater. Today Proc. 44 482

    Article  CAS  Google Scholar 

  20. Phromma S, Wutikhun T, Kasamechonchung P, Eksangsri T and Sapcharoenkun C 2020 Appl. Sci. 10 993

    Article  CAS  Google Scholar 

  21. Khalifa Z S 2017 RSC Adv. 7 30295

    Article  CAS  Google Scholar 

  22. Prince and Stalick 1992 Proc. NIIST Conf. 846 110

    Google Scholar 

  23. Sapna, Budhiraja N, Kumar V and Singh S K 2018 J. Adv. Phys. 6 492

  24. Al-Tabbakh A A, Karatepe N, Al-Zubaidi A B, Benchaabane A and Mahmood N B 2019 Int. J. Energy Res. 43 1903

    Article  CAS  Google Scholar 

  25. Ibrahim D M and Abu-Ayana Y M 2008 Mater. Chem. Phys. 111 326

    Article  CAS  Google Scholar 

  26. Velumani S, Mathew X, Sebastian P J, Narayandass S K and Mangalaraj D 2003 Sol. Energy Mater. Sollar Cells 76 347

    Article  CAS  Google Scholar 

  27. Spurr R A and Myers H 1957 Anal. Chem. 29 760

    Article  CAS  Google Scholar 

  28. Ahadi S, Moalej N S and Sheibani S 2019 Solid State Sci. 96 105975

  29. Klinghoffer N B, Castaldi M J and Nzihou A 2012 Ind. Eng. Chem. Res. 51 13113

    Article  CAS  Google Scholar 

  30. Singh R and Dutta S 2018 Adv. Powder Technol. 29 211

    Article  CAS  Google Scholar 

  31. Hanaor D A H, Chironi I, Karatchevtseva I and Triani G 2012 Adv. Appl. Ceram. 111 149

    Article  CAS  Google Scholar 

  32. Ren Y, Zhao L, Zou Y, Song L, Dong N and Wang J 2019 Nanomaterials 9 1

    Google Scholar 

  33. León A, Reuquen P, Garín C, Segura R, Vargas P, Zapata P et al 2017 Appl. Sci. 7 1

    Article  CAS  Google Scholar 

  34. Koysuren H N 2018 Catalysts 8 499

    Article  CAS  Google Scholar 

  35. Cychosz K A and Thommes M 2018 Engineering 4 559

    Article  CAS  Google Scholar 

  36. Kubelka P 1948 J. Opt. Soc. Am. 38 330

    Google Scholar 

  37. López R and Gómez R 2012 J. Sol-Gel Sci. Technol. 61 1

    Article  CAS  Google Scholar 

  38. Werner E and Deniz M 2016 Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 173 965

    Google Scholar 

  39. Patil S M, Deshmukh S P, More K V, Shevale V B, Mullani S B, Dhodamani A G et al 2018 Mater. Chem. Phys. 225 247

    Article  CAS  Google Scholar 

  40. Yang H, Zhang K, Shi R, Li X, Dong X and Yu Y 2006 J. Alloys Compd. 413 302

    Article  CAS  Google Scholar 

  41. Luttrell T, Halpegamage S, Tao J, Kramer A, Sutter E and Batzill M 2015 Sci. Rep. 4 1

    Article  CAS  Google Scholar 

  42. Xie X and Gao L 2009 Curr. Appl. Phys. 9 S185

    Article  Google Scholar 

  43. Sadegh H, Ali G A M, Gupta V K, Makhlouf A S H, Ghoshekandi R S, Nadagouda M N et al 2017 J. Nanostruct. Chem. 7 1

    Article  CAS  Google Scholar 

  44. Kim E Y, Kim D S and Ahn B T 2009 Bull. Korean Chem. Soc. 30 193

    Article  CAS  Google Scholar 

  45. Ibrahim S M, Badawy A A and Essawy H A 2019 J. Nanostruct. Chem. 9 281

    Article  CAS  Google Scholar 

  46. Nosaka Y and Nosaka A Y 2017 Chem. Rev. 117 11302

    Article  CAS  Google Scholar 

  47. Mha R and Alhamidi J 2018 Adv. J Food Sci. Technol. 1 1

    Google Scholar 

  48. Yan H, Wang X, Yao M and Yao X 2013 Prog. Nat. Sci. Mater. Int. 23 402

    Article  CAS  Google Scholar 

  49. Wu H, Ma J, Zhang C and He H 2014 Res. J. Environ. Sci. 26 673

    CAS  Google Scholar 

  50. Batzill M 2011 Energy Environ. Sci. 4 3275

    Article  CAS  Google Scholar 

  51. Pawar M, Sendoǧdular S T and Gouma P 2018 J. Nanomater. 2018 13

    Article  CAS  Google Scholar 

  52. Matsumoto Y 1996 J. Solid State Chem. 126 227

    Article  CAS  Google Scholar 

  53. Moon S A, Salunke B K, Saha P, Deshmukh A R and Kim B S 2018 Korean J. Chem. Eng. 35 702

    Article  CAS  Google Scholar 

  54. Souza E D, Fulke A B, Mulani N, Ram A, Asodekar M, Narkhede N et al 2017 Environ. Earth Sci. 76 721

    CAS  Google Scholar 

  55. Mall D, Srivastava V C, Kumar G V A and Mishra I M 2006 Colloids Surf. A Physicochem. Eng. Asp. 278 175

    Article  CAS  Google Scholar 

  56. Kosmulski M 2002 Adv. Colloid Interface Sci. 99 255

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge DST-SAIF, Cochin and CLIF, the University of Kerala for instrumentation support. Gopika M S acknowledges Junior Research Fellowship [AcEVI(4)/37275/JRF/2019] from the University of Kerala.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prabitha B Nair.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gopika, M.S., Jayasudha, S. & Nair, P.B. Phase transformation induced structural, optical and photocatalytic investigations of TiO2 nanoparticles. Bull Mater Sci 45, 71 (2022). https://doi.org/10.1007/s12034-021-02647-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-021-02647-4

Keywords

Navigation