Skip to main content
Log in

Impact of 3d-transition metal [T = Sc, Ti, V, Cr, Mn, Fe, Co] on praseodymium perovskites PrTO3: standard spin-polarized GGA and GGA+U investigations

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Generalized gradient approximation (GGA) computations based on the first-principles density functional theory (DFT) are executed to gain insight into the structural stability and physical properties of the 3d-transition-metal-based praseodymium series of perovskite compounds PrTO3. Correspondingly, to investigate the effect of on-site Coulomb repulsion energy, the exchange-correlation version of GGA is implemented via utilizing the (GGA+U) functional. The computed ground state energies (\(E_{0}\)) and equilibrium structural parameters of the varied T-site [T = Sc, Ti, V, Cr, Mn, Fe, Co] in the unit cell of PrTO3 reveal a cubic symmetry (Pm-3m) in all compounds, in a good match with the few existing DFT and experimental literature. Besides, the computed spin-polarized band structures and partial and total density of states (DOS) within GGA predict a half-metallic (HM) behaviour for [T = Sc] perovskite and a metallic nature for the rest [T = Ti, V, Cr, Mn, Fe, Co]. The analysis of \(E_{0}\) results, DOSs and spin magnetic moments indicates that all perovskites PrTO3 are stable in a ferromagnetic (FM) phase via the double exchange interaction T3+–O2-–T4+. PrTO3 show FM order with fractional values of their total spin magnetic moment per unit cell (\(M_{{{\text{PrTO}}_{3} }}\)), except [T = Sc] perovskite that gives integer value (\(M_{{{\text{PrScO}}_{3} }}\) ≈ 2.0 \(\mu_{{\text{B}}}\)) with HM-FM property. Conversely, it is found that PrTO3 exhibit HM-FM properties when [T = Sc, V, Cr, Mn, Fe] plus GGA+U is applied. Due to the cation–anion hybridizations, Pr3+–O2– and T3+–O2–, both Pr3+ and T3+ ions contribute to the largest part of \(M_{{{\text{PrTO}}_{3} }}\) with minor effects coming from O2– ions and interstitials. Furthermore, the three-dimensional and two-dimensional electronic charge density plots of PrTO3 along the (110) plane confirm strong ionic nature along the Pr3+–O2– bonds, whereas the other O2––T3+–O2– bonds have strong covalent character.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Pandech N, Sarasamak K and Limpijumnong S 2015 J. Appl. Phys. 117 174108

    Article  CAS  Google Scholar 

  2. Tripathi S, Tiwari R, Shrivastava A K, Singh V K, Dubey N and Dubey V 2018 Optik 157 365

    Article  CAS  Google Scholar 

  3. Feteira A, Sinclair D C, Rajab K Z and Lanagan M T 2008 J. Am. Ceram. Soc. 91 893

    Article  CAS  Google Scholar 

  4. Rai D P, Sandeep Shankar A, Sakhya A P, Sinha T P, Merabet B et al 2017 Mater. Chem. Phys. 186 620

    Article  CAS  Google Scholar 

  5. Lin K Y A, Chen Y C and Lin Y F 2017 Chem. Eng. Sci. 160 96

    Article  CAS  Google Scholar 

  6. Bhatti H S, Hussain S T, Khan F A and Hussain S 2016 Appl. Surf. Sci. 367 291

    Article  CAS  Google Scholar 

  7. Hu Q, Yue B, Shao H, Yang F, Wang J, Wang Y et al 2020 J. Mater. Sci. 55 8421

    Article  CAS  Google Scholar 

  8. Abbad A, Benstaali W, Bentounes H A, Bentata S and Benmalem Y 2016 Solid State Commun. 228 36

    Article  CAS  Google Scholar 

  9. Olsson E, Anglès X A and Leeuw N H 2016 J. Chem. Phys. 145 014703

    Article  CAS  Google Scholar 

  10. Aliabad H A R, Barzanuni Z, Sani S R, Ahmad I, Asadabadi S J, Vaezi H et al 2017 J. Alloys Compd. 690 942

    Article  CAS  Google Scholar 

  11. Zhang Y, Ma C, Yang X, Song Y, Liang X, Zhao X et al 2019 Sens. Actuator B-Chem. 295 56

    Article  CAS  Google Scholar 

  12. Sabir B, Murtaza G, Mahmood Q, Ahmad R and Bhamu K C 2017 Curr. Appl. Phys. 17 1539

    Article  Google Scholar 

  13. Berri S, Maouche D, Ibrir M and Bakri B 2014 Mat. Sci. Semicon. Proc. 26 199

    Article  CAS  Google Scholar 

  14. Sharma P, Masrour R, Jabar A, Fan J and Yang H 2020 Chem. Phys. Lett. 740 137057

    Article  CAS  Google Scholar 

  15. Singh K D, Pandit R and Kumar R 2018 Solid State Sci. 85 70

    Article  CAS  Google Scholar 

  16. Huang S, Xia Z, Yang F, Zhang X, Song Y, Jiang D et al 2020 J. Magn. Magn. Mater. 510 166934

    Article  CAS  Google Scholar 

  17. Shanker J, Rao G N, Venkataramana K and Babu D S 2018 Phys. Lett. A 382 2974

    Article  CAS  Google Scholar 

  18. Alqahtani A, Husain S, Somvanshi A and Khan W 2019 J. Alloys Compd. 804 401

    Article  CAS  Google Scholar 

  19. Kumar S, Coondoo I, Vasundhara M, Puli V S and Panwar N 2017 Physica B 519 69

    Article  CAS  Google Scholar 

  20. Lu C and Liu J M 2016 J. Materiomics 2 213

    Article  Google Scholar 

  21. Subramanian S, Anandan S and Natesan B 2020 Mater. Today Commun. 24 101079

    Article  CAS  Google Scholar 

  22. Aquino F M, Melo D M A, Pimentel P M, Braga R M, Melo M A F, Martinelli A E et al 2012 Mater. Res. Bull. 47 2605

    Article  CAS  Google Scholar 

  23. Ullah H, Kayani F S and Khenata R 2019 Mater. Res. Express 6 12

    Google Scholar 

  24. Verma A S and Jindal V K 2009 J. Alloys Compd. 485 514

    Article  CAS  Google Scholar 

  25. Goldschmidt V M 1926 Die Gesetze der Krystallochemie. D. Naturwiss. 14 477

    Article  CAS  Google Scholar 

  26. Boubchir M and Aourag H 2020 Comput. Condens. Matter 24 e00495

    Article  Google Scholar 

  27. Kang S G 2018 J. Solid State Chem. 262 251

    Article  CAS  Google Scholar 

  28. Safari S, Ahmadian S M S and Ghadim A R A 2020 J. Photochem. Photobiol. A 394 112461

    Article  CAS  Google Scholar 

  29. Chen S, Bimenyimana T and Guli M 2019 Results Phys. 14 102408

    Article  Google Scholar 

  30. Allred A L 1961 J. Inorg. Nucl. Chem. 17 215

    Article  CAS  Google Scholar 

  31. Shannon R D 1976 Acta Cryst. A 32 751

    Article  Google Scholar 

  32. Blaha P, Schwarz K, Madsen G K H, Kvasnicka D, Luitz J, Laskowski R et al 2019 An augmented plane wave plus local orbitals program for calculating crystal properties Vienna University of Technology, Austria (ISBN 3-9501031-1-2)

  33. Kohn W and Sham L J 1965 Phys. Rev. 140 A1133

    Article  Google Scholar 

  34. Hohenberg P and Kohn W 1964 Phys. Rev. 136 864

    Article  Google Scholar 

  35. Sabir B, Murtaza G and Arif Khalil R M 2020 J. Mol. Graph. Model 94 107482

    Article  CAS  Google Scholar 

  36. Perdew J P, Burke K and Wang Y 1996 Phys. Rev. B 54 16533

    Article  CAS  Google Scholar 

  37. Usman T, Murtaza G, Luo H and Mahmood A 2017 J Supercond. Nov. Magn. 30 1389

    Article  CAS  Google Scholar 

  38. Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    Article  CAS  Google Scholar 

  39. Eglitis R I and Popov A I 2018 J. Saudi Chem. Soc. 22 459

    Article  CAS  Google Scholar 

  40. Eglitis R I, Purans J, Gabrusenoks J, Popov A I and Jia R 2020 Crystals 10 745

    Article  CAS  Google Scholar 

  41. Anjami A, Boochani A, Elahi S M and Akbari H 2017 Results Phys. 7 3522

    Article  Google Scholar 

  42. Even J, Pedesseau L, Tea E, Almosni S, Rolland A, Robert C et al 2014 Int. J. Photoenergy 2014 649408

    Article  CAS  Google Scholar 

  43. Birch F 1947 Phys. Rev. 71 809

    Article  CAS  Google Scholar 

  44. Murnaghan F D 1944 PNAS 30 244

    Article  CAS  Google Scholar 

  45. Moreira R L and Dias A 2007 J. Phys. Chem. Solid 68 1617

    Article  CAS  Google Scholar 

  46. Verma A S and Kumar A 2012 J. Alloys Compd. 541 210

    Article  CAS  Google Scholar 

  47. Ali Z, Ahmad I, Amin B, Maqbool M, Murtaza G, Khan I et al 2011 Physica B 406 3800

    Article  CAS  Google Scholar 

  48. Wei-Ran W, Da-Peng X, Wen-Hui S, Zhan-Hui D, Yan-Feng X and Geng-Xin S 2005 Chin. Phys. Lett. 22 2400

    Article  Google Scholar 

  49. Gong S, Chen P and Liu B G 2014 J. Magn. Magn. Mater. 349 74

    Article  CAS  Google Scholar 

  50. Zhu X H, Xiao X B, Chen X R and Liu B G 2017 RSC Adv. 7 4054

    Article  CAS  Google Scholar 

  51. Monir M E A and Dahou F Z 2020 SN Appl. Sci. 2 465

    Article  CAS  Google Scholar 

  52. Bader R F W 1994 Atoms in molecules: a quantum theory (Oxford: Clarendon Press)

    Google Scholar 

  53. Bader R F W 1991 Chem. Rev. 91 893

    Article  CAS  Google Scholar 

  54. Eglitis R I 2013 Solid State Ionics 230 43

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The researcher would like to thank the Deanship of Scientific Research, Qassim University, for supporting and spurring publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Musa Saad H-E.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2847 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saad H-E, M.M. Impact of 3d-transition metal [T = Sc, Ti, V, Cr, Mn, Fe, Co] on praseodymium perovskites PrTO3: standard spin-polarized GGA and GGA+U investigations. Bull Mater Sci 45, 69 (2022). https://doi.org/10.1007/s12034-021-02645-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-021-02645-6

Keywords

Navigation