Skip to main content
Log in

Effect of the O vacancy defects on the electronic structure and absorption spectra of BiOCl photocatalyst

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

In this study, the effects of the O vacancy defects with different charge states on the electronic structure and absorption spectra of bulk BiOCl are investigated using hybrid functional calculations. The previous calculations have shown that the O vacancy defects in BiOCl only could present the neutral (VO0) and +2 charge (VO2+) states. In the present study, it is first found and affirmed that the VO2+ defect in BiOCl acts as an electron capture centre, and the direct recombination of the photogenerated electron–hole pairs can be effectively inhibited by the VO2+ defect. While the VO0 defect acts as a recombination centre of the photogenerated carriers, it also induces a strong absorption peak around 500 nm in BiOCl. Moreover, the absorption strengthens with increasing O vacancy concentration. Therefore, it is suggested that BiOCl could present more significant photocatalytic activity via controlling and optimizing the concentration ratio of oxygen vacancies in 0 and +2 charge states. With an optimized concentration ratio, the photocatalytic activity of BiOCl should increase with increasing total O vacancy concentration in a larger concentration range. Our study thus provides a guideline or a reference for the design of highly efficient BiOCl or BiOCl-based photocatalyst with oxygen vacancies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Li H and Zhang L 2014 Nanoscale 6 7805

    Article  CAS  Google Scholar 

  2. Malathy P, Vignesh K, Rajarajan M and Suganthi A 2014 Ceram. Int. 40 101

    Article  CAS  Google Scholar 

  3. Kudo A, Omori K and Kato H 1999 J. Am. Chem. Soc. 121 11459

    Article  CAS  Google Scholar 

  4. Wang W, Huang F and Lin X 2007 Scripta Mater. 56 669

    Article  CAS  Google Scholar 

  5. Ding L, Wei R, Chen H, Hu J and Li J 2015 Appl. Catal. B 172–173 91

    Google Scholar 

  6. Jia X, Cao J, Lin H, Zhang M, Guo X and Chen S 2017 Appl. Catal. B 204 505

    Article  CAS  Google Scholar 

  7. Yu J, Wei B, Zhu L, Gao H, Sun W and Xu L 2013 Appl. Surf. Sci. 284 497

    Article  CAS  Google Scholar 

  8. Weng S, Chen B, Xie L, Zheng Z and Liu P 2013 J. Mater. Chem. A 1 3068

    Article  CAS  Google Scholar 

  9. Ye L, Zan L, Tian L, Peng T and Zhang J 2011 Chem. Commun. 47 6951

    Article  CAS  Google Scholar 

  10. Chen Z X J, Fang J W and Zhang S Y 2015 Int. J. Thermophys. 36 910

    Article  CAS  Google Scholar 

  11. Guan M, Xiao C, Zhang J, Fan S, An R, Cheng Q et al 2013 J. Am. Chem. Soc. 135 10411

    Article  CAS  Google Scholar 

  12. Fujishima Y, Okamoto S, Yoshiba M, Itoi T, Kawamura S, Yoshida Y et al 2015 J. Am. Chem. Soc. 3 8389

    CAS  Google Scholar 

  13. Liu X, Xu H, Li D, Zou Z and Xia D 2019 ChemistrySelect 4 12245

    Article  CAS  Google Scholar 

  14. Zhang X, Zhao L, Fan C, Liang Z and Han B 2012 Comp. Mater. Sci. 61 180

    Article  CAS  Google Scholar 

  15. Ye L, Zan L, Tian L, Peng T and Zhang J 2011 Chem. Commun. 47 951

    Google Scholar 

  16. Zhang P, Qiu Y, Yang S, Jiao Y, Ji C, Li Y et al 2017 Mater. Res. Bull. 96 478

    Article  CAS  Google Scholar 

  17. Cai Y, Li D, Sun J, Chen M, Li Y, Zou Z et al 2018 Appl. Surf. Sci. 439 697

    Article  CAS  Google Scholar 

  18. Wang Q, Wang W, Zhong L, Liu D, Cao X and Cui F 2018 Appl. Catal. B 220 290

    Article  CAS  Google Scholar 

  19. Liu G, Xu H, Li D, Zou Z, Li Q and Xia D 2019 EurJIC 17 4887

    Google Scholar 

  20. Zhang H, Liu L and Zhou Z 2012 Phys. Chem. Chem. Phys. 14 1286

    Article  CAS  Google Scholar 

  21. Jing T, Dai Y, Ma X, Wei W and Huang B 2016 Phys. Chem. Chem. Phys. 18 7261

    Article  CAS  Google Scholar 

  22. Kong B, Zeng T X and Wang W 2021 Phys. Chem. Chem. Phys. 23 19841

    Article  CAS  Google Scholar 

  23. Kresse G and Joubert D 1999 Phys. Rev. B 59 1758

    Article  CAS  Google Scholar 

  24. Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    Article  CAS  Google Scholar 

  25. Heyd J, Scuseria G E and Ernzerhof M 2003 J. Chem. Phys. 118 8207

    Article  CAS  Google Scholar 

  26. Zhang K L, Liu C M, Huang F Q, Zheng C and Wang W D 2016 Appl. Catal. B 68 125

    Article  Google Scholar 

  27. Yao W, Zhang J, Wan Y and Ren F 2018 Appl. Surf. Sci. 435 1351

    Article  CAS  Google Scholar 

  28. Yang Z, Pei Y, Tan S, Wang X, Liu L and Su X 2013 Comp. Mater. Sci. 74 50

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Doctor Research Fund of China West Normal University (Grants No. 412773) as well as the NSFC under Grant No. 11464005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kong Bo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bo, K., Xinyou, A. Effect of the O vacancy defects on the electronic structure and absorption spectra of BiOCl photocatalyst. Bull Mater Sci 45, 56 (2022). https://doi.org/10.1007/s12034-021-02643-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-021-02643-8

Keywords

Navigation