Skip to main content

Advertisement

Log in

Effect of induction heat treatment on the mechanical properties of Si3N4–graphene-reinforced Al2024 hybrid composites

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Recently, graphene nanoplatelets (GNPs) or silicon nitride (Si3N4) may be employed as a reinforcing element in the Al2024 aluminium alloy matrix due to the solid lubricant property of GNPs and high compressive strength of Si3N4. However, there is no article related to the investigation of the mechanical properties of Al2024–Si3N4–graphene hybrid composites. In this article, Si3N4 or Si3N4/graphene binary particle-reinforced Al2024 aluminium-based composites were produced by powder metallurgy route and induction heat-treatment process. The effects of induction heat treatment (a 500°C sintering temperature and a 35 MPa pressure), Si3N4 (1–12 wt%) and graphene (0.15–0.45 wt%) contents on the microstructure and mechanical strength of Al-based composites were examined. According to the test results, the micro Vickers hardness improved from ~94.8 HV (Al2024 alloy) to ~105.2 HV (Al2024–9Si3N4) and ~108.5 HV (Al2024–9Si3N4–0.15GNPs). Similarly, the compressive strength was enhanced from ~361 MPa (Al2024 alloy) to ~510 MPa (Al2024–9Si3N4) and ~610 MPa (Al2024–9Si3N4–0.15GNPs). The compressive strength of sintered and induction heat-treated Al2024–9Si3N4–0.15GNPs composite improved by ~8.9% compared with the conventional sintered same specimen’s strength. In conclusion, the induction heat-treatment process and Si3N4/graphene addition significantly enhanced the mechanical strength of Al2024 hybrid composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. Parveen A, Chauhan N R and Suhaib M 2019 Mater. Res. Express 6 1

    Google Scholar 

  2. Srivatsan T S, Ibrahim I A, Mohamed F A and Lavernia E J 1991 J. Mater. Sci. 26 5965

    CAS  Google Scholar 

  3. Shukla M, Dhakad S K, Agarwal P and Pradhan M K 2018 Mater. Today-Proc. 5 5830

    CAS  Google Scholar 

  4. Gowda B M U, Ravindra H V, Gurupavan H R, Ugrasen G and Prakash G V N 2014 Proc. Mat. Sci. 5 2207

    CAS  Google Scholar 

  5. McEntire B J, Lakshminarayanan R, Thirugnanasambandam P, Sampson J S, Bock R and Brien D O 2016 Bioceram. Dev. Appl. 6 1

    Google Scholar 

  6. Rangari V K, Yousuf M and Jeelani S 2013 J. Compos. 2013 1

    Google Scholar 

  7. Balázsi C, Fényi B, Hegman N, Kövér Z, Wéber F, Vértesy Z et al 2006 Compos. Part B-Eng. 37 418

    Google Scholar 

  8. Chen J K and Huang I S 2013 Compos. Part-B Eng. 44 698

    CAS  Google Scholar 

  9. Berman D, Erdemir A and Sumant A V 2014 Mater. Today 17 31

    CAS  Google Scholar 

  10. Peng B, Locascio M, Zapol P, Li S, Mielke S L, Schatz G C et al 2008 Nat. Nanotechnol. 3 626

    CAS  Google Scholar 

  11. Wang J, Li Z, Fan G, Pan H, Chen Z and Zhang S 2012 Scripta Mater. 66 594

    CAS  Google Scholar 

  12. Geim A K and Novoselov K S 2007 Nat. Mater. 6 183

    CAS  Google Scholar 

  13. Randviir E P, Brownson D A C and Banks C E 2014 Mater. Today 17 426

    CAS  Google Scholar 

  14. Savage N 2012 Nature 483 30

    Google Scholar 

  15. Singh V, Joung D, Zhai L, Das S, Khondaker S I and Seal S 2012 Prog. Mater. Sci. 56 1178

    Google Scholar 

  16. Yan S J, Dai S L, Zhang X Y, Yang C, Hong Q H, Chen J Z et al 2014 Mater. Sci. Eng. A-Struct. 612 440

    CAS  Google Scholar 

  17. Zhu Y, Murali S, Cai W, Li X, Suk J W, Potts J R et al 2010 Adv. Mater. 22 3906

    CAS  Google Scholar 

  18. Khalil A K and Almajid A A 2012 Mater. Des. 36 58

    CAS  Google Scholar 

  19. Cevik S and Gürbüz M 2018 T. Indian. Ceram. Soc. 77 37

    CAS  Google Scholar 

  20. Gül B, Gezici L U, Ayvaz M and Çavdar U 2020 Int. Adv. Res. Eng. J. 4 173

    Google Scholar 

  21. Ghasali E, Yazdani-rad R, Asadian K and Ebadzadeg T 2017 J. Alloys Compd. 690 512

    CAS  Google Scholar 

  22. Vinothkumar H, Saravanakumar S, Ramesh C, Prakash P, Ragul vignesh A and Naveen S 2020 Mater. Today-Proc. 33 3089

    CAS  Google Scholar 

  23. Zi-yang X, Guo-qin C, Yan-mei L, Wen-shu Y and Gao-hui W 2009 Trans. Nonferrous Met. Soc. China 19 373

    Google Scholar 

  24. Zi-yang X, Guo-qin C, Gao-hui W, Wen-shu Y and Yan-mei L 2011 Trans. Nonferrous Met. Soc. China 21 285

    Google Scholar 

  25. Shin S E and Bae D H 2015 Compos. Part A-Appl. S 78 42

    CAS  Google Scholar 

  26. AbuShanab W S, Moustafa E B, Ghandourah E and Taha M A 2020 Results Phys. 19 1

    Google Scholar 

  27. Chen L, Qi Y, Fei Y and Du Z 2021 Met. Mater. Int. https://doi.org/10.1007/s12540-020-00803-9

    Article  Google Scholar 

  28. Shin S E, Ko Y J and Bae D H 2016 Compos. Part B-Eng. 106 66

    CAS  Google Scholar 

  29. Chen L, Qi Y, Fei Y, Liu Y and Du Z 2020 Mater. Trans. 61 1239

    CAS  Google Scholar 

  30. Kumar H G P and Xavior M A 2017 Procedia Eng. 174 992

    CAS  Google Scholar 

  31. Gürbüz M, Şenel M C and Koç E 2018 J. Compos. Mater. 52 553

    Google Scholar 

  32. Şenel M C, Gürbüz M and Koç E 2018 Compos. Part B-Eng. 154 1

    Google Scholar 

  33. Şenel M C, Gürbüz M and Koç E 2019 J. Compos. Mater. 53 4043

    Google Scholar 

  34. Dieter G E 1961 Mechanical metallurgy (England: McGraw-Hill)

    Google Scholar 

  35. Şenel, M C 2018 Ph D Thesis (Samsun: Ondokuz Mayıs University)

  36. Kaczmar J W, Pietrzak K and Wlosinski W 2000 J. Mater. Process. Tech. 106 58

    Google Scholar 

  37. Srivastava G, Banwait S S, Mehra D and Harsha S P 2021 J. Univ. Shanghai Sci. Tech. 23 558

    Google Scholar 

  38. Zhang Y and Pan C 2012 Diam. Relat. Mater. 24 1

    Google Scholar 

  39. Silicon nitride (Si3N4)-hot pressed silicon nitride supplier data by Goodfellow. Available: https://www.azom.com/article.aspx?ArticleID=2263 (accessed on 21 September 2021)

  40. ASM aerospace specification metals, aluminum 2024-T4. Available: http://asm.matweb.com/search/SpecificMaterial.asp?bassnum=MA2024T4 (accessed on 21 September 2021)

  41. Habibi M K, Joshi S P and Gupta M 2010 Acta Mater. 58 6104

    CAS  Google Scholar 

  42. Torralba J M, Costa C E and Velasco F 2003 J. Mater. Process. Tech. 133 203

    CAS  Google Scholar 

  43. Cao Z, Wang X, Li J, Wu Y, Zhang H, Guo J et al 2017 J. Alloys Compd. 696 498

    CAS  Google Scholar 

  44. Hu Z, Tong G, Nian Q, Xu R, Saei M, Chen F et al 2016 Compos. Part B-Eng. 93 352

    CAS  Google Scholar 

  45. Şenel M C and Gürbüz M 2020 Bull. Mater. Sci. 43 1

    Google Scholar 

  46. Selvaraj S K, Nagarajan M K and Kumaraswamidhas L A 2017 Arch. Civ. Mech. Eng. 17 43

    Google Scholar 

  47. Şenel M C, Gürbüz M and Koç E 2017 Univ. J. Mater. Sci. 5 95

    Google Scholar 

  48. Bastwros M, Kim G Y, Zhu C, Zhang K, Wang S, Tang X et al 2014 Compos. Part B-Eng. 60 111

    CAS  Google Scholar 

  49. Rashad M, Pan F, Tang A and Asif M 2014 Prog. Nat. Sci.-Mater. 24 101

    CAS  Google Scholar 

  50. Pérez-Bustamante R, Bolaños-Morales D, Bonilla-Martínez J, Estrada-Guel I and Martínez-Sánchez R 2014 J. Alloys Compd. 615 578

    Google Scholar 

  51. Du X M, Chen R Q and Liu F G 2017 Dig. J. Nanomater. Biostruct. 12 37

    Google Scholar 

Download references

Acknowledgements

We thank the Black Sea Advanced Technology Research and Application Center (KITAM) in Ondokuz Mayıs University (OMU) for SEM and XRD analysis. We also thank Assoc. Prof. Dr Mevlüt Gürbüz for useful suggestions and helpful discussions related to induction heat-treatment and microstructure analyses. This study was supported by the [Scientific Researched Project Department of Ondokuz Mayıs University] under [Grant Number PYO.MUH.1901.20.001].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmut Can Şenel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Şenel, M.C., Mahmutoğlu, Ü. Effect of induction heat treatment on the mechanical properties of Si3N4–graphene-reinforced Al2024 hybrid composites. Bull Mater Sci 45, 48 (2022). https://doi.org/10.1007/s12034-021-02638-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-021-02638-5

Keywords

Navigation