Skip to main content
Log in

Gallium-substituted lanthanide titanium niobate electroceramics with enhanced dielectric properties

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

This study reports the development of niobium-based electroceramics for electrical, optical and high permittivity applications. The conventional solid-state ceramic method was employed to synthesize the ceramics Ce0.8Ga0.2TiNbO6, Pr0.8Ga0.2TiNbO6, Nd0.8Ga0.2TiNbO6 and Sm0.8Ga0.2TiNbO6. Structural studies of the prepared ceramics were carried out by applying X-ray diffraction technique along with vibrational spectroscopic studies. The pattern of the grains on the surface of the samples developed during the sintering was analysed by scanning electron micrograph. Ultraviolet–visible absorption spectra were used to generate the optical band gap for the samples. In addition, the dielectric properties at radio and microwave frequencies were studied. Grain and grain boundary effects on the electrical properties of the ceramics were assessed by applying impedance spectroscopic analysis. The high Q-factor and high dielectric permittivity of samples make them potential candidates for the dielectric resonator applications in communication systems. The impedance spectroscopic analysis confirms that the prepared ceramics exhibit electrical properties like semiconductors at high temperatures. The presence of gallium atoms in lanthanide titanium niobate system resulted in the lowering of sintering temperature and in the betterment of optical and electrical properties of the ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

References

  1. Sebastian M T, Solomon S and Ratheesh R 2001 J. Am. Ceram. Soc. 84 1487

    Article  CAS  Google Scholar 

  2. Komkov I 1963 Dokl. Acad. Nauk. SSSR 148 1182

    CAS  Google Scholar 

  3. Qi X, Gallagher H G, Han T P J and Henderson B 1997 J. Cryst. Growth 180 73

    Article  CAS  Google Scholar 

  4. Solomon Sam, Kumar Manoj, Surendran K P, Mohanan P and Sebastian M T 2001 Mater. Chem. Phys. 67 291

    CAS  Google Scholar 

  5. Solomon S, Joseph J T, Kumar H P and Thomas J K 2006 J. Mater. Lett. 60 2814

    Article  CAS  Google Scholar 

  6. Joseph S, Suresh M K, Thomas J K, John S and Solomon S 2010 Int. J. Appl. Ceram. Technol. 7 E129

    Article  Google Scholar 

  7. Kumar H P, Thomas J K, Varma M R and Solomon S 2008 J. Alloys Compd. 455 475

    Article  CAS  Google Scholar 

  8. Paschoal C W A, Moreira R L, Fantini C, Pimenta M A, Surendran K P and Sebastian M T 2003 J. Eur. Ceram. Soc. 23 2661

    Article  CAS  Google Scholar 

  9. Chen M Y, Chia C T, Lin I N, Lin L J, Ahn C W and Nahm Shan 2006 J. Eur. Ceram. Soc. 26 1965

    Article  CAS  Google Scholar 

  10. Ratheesh R, Sreemoolanathan H, Solomon Sam and Sebastian M T 1997 J. Solid State Chem. 131 2

    Article  CAS  Google Scholar 

  11. Jacob Lovely, Padmakumar H, Gopchandran K G, Thomas J K and Solomon Sam 2007 J. Mater. Sci.: Mater. Electron. 18 831

    CAS  Google Scholar 

  12. John Fergy, John Annamma, Thomas Jijimon K and Solomon Sam 2017 J. Mater. Sci.: Mater. Electron. 28 5997

    CAS  Google Scholar 

  13. John Fergy, Jacob John, Thomas Jijimon K and Solomon Sam 2018 J. Asian Ceram. Soc. 5 151

    Article  Google Scholar 

  14. John Fergy and Solomon Sam 2020 Phys. Lett. A 384 126731

    Article  CAS  Google Scholar 

  15. Nakamoto K 1986 Infrared and Raman spectra of inorganic and coordination compounds 4th edn. (New York: Wiley)

    Google Scholar 

  16. Paschol C W A, Moreira R L, Fantini C, Kmenta M A, Surendran K P et al 2003 J. Eur. Ceram. Soc. 23 2661

    Article  Google Scholar 

  17. Oishi T, Kan A, Ohsato H and Ogawa H 2006 J. Eur. Ceram. Soc. 26 2075

    Article  CAS  Google Scholar 

  18. Maxwell J C 1954 A treatise on electricity and magnetism (Oxford University Press)

  19. Koops C G 1951 Phys. Rev. 83 121

    Article  CAS  Google Scholar 

  20. Solomon Sam 2010 J. Alloys Compd. 506 243

    Article  CAS  Google Scholar 

  21. Qi X, Hun T P J, Gallangher H G, Henderson B, Illingworth R and Ruddock I S 1996 J. Phys. Cond. Matter 8 4837

    Article  CAS  Google Scholar 

  22. Behera B, Nayak P and Choudhary R N P 2008 Mater. Res. Bull. 43 401

    Article  CAS  Google Scholar 

  23. Macdonald J R 1987 Impedance spectroscopy (New York: Wiley)

    Google Scholar 

  24. Polu A R and Kumar R 2011 Bull. Mater. Sci. 34 1063

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fergy John.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

John, F., Shemim, S.S. Gallium-substituted lanthanide titanium niobate electroceramics with enhanced dielectric properties. Bull Mater Sci 45, 52 (2022). https://doi.org/10.1007/s12034-021-02636-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-021-02636-7

Keywords

Navigation