Skip to main content
Log in

Fabrication, characterization and photocatalytic degradation activity of PS/PANI/CeO2 tri-layer nanostructured hybrids

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Herein, we report the in-situ crystallization of CeO2 nanoparticles (NPs) onto the polyaniline (PANI)-modified polystyrene (PS) latexes via a two-step approach. The resulting polymer/CeO2 products were characterized in terms of X-ray diffraction, scanning electron microscopy, transmission electron microscopy, thermogravimetry, UV–Vis spectra, Fourier-transform infrared spectroscopy and photoluminescence (PL) spectroscopy. The core/shell structured polymer/CeO2 composites were utilized as photocatalysts for the degradation of methylene blue dye molecules in aqueous solution. The photocatalytic activity of PS/PANI/CeO2 ternary hybrids under UV light irradiation was evaluated and compared with that of PS/CeO2 binary composites. By comparison with PS/CeO2, UV–Vis and PL spectra results revealed that the PS/PANI/CeO2 exhibited a narrowed bandgap, a broadened light response range and an improved separation efficiency of photogenerated electron–hole pairs, which contributed to enhancement of the photocatalytic activity. As expected, the tri-layer PS/PANI/CeO2 hybrids exhibited relative-high photodegradation efficiency compared to the PS/CeO2 ones and commercial CeO2 NPs, which might be attributed to the synergic effect between CeO2 and PANI. The provided data indicated that the developed tri-layer PS/PANI/CeO2 hybrids exhibited application potentials in photodegradation towards wastewater containing organic dyes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Scheme 1

Similar content being viewed by others

References

  1. Loridant S 2020 Catal. Today 373 98

    Article  Google Scholar 

  2. Guo Y and Therien-Aubin H 2021 ACS Appl. Mater. Inter. 13 37578

    Article  CAS  Google Scholar 

  3. Shen C H, Chen Y, Xu X J, Li X Y, Wen X J, Liu Z T et al 2021 J. Hazard. Mater. 416 126217

    Article  CAS  Google Scholar 

  4. Dai Y, Li F, Mo D C, Wu D C and Lyu S S 2021 ACS Appl. Mater. Inter. 13 26404

    Article  CAS  Google Scholar 

  5. Melinte V, Stroea L and Chibac-Scutaru A L 2019 Catalysts 9 986

    Article  CAS  Google Scholar 

  6. Baldim V, Yadav N, Bia N, Graillot A, Loubat C and Singh S 2020 ACS Appl. Mater. Inter. 12 42056

    Article  CAS  Google Scholar 

  7. Nguyet N T, Thu V V, Lan H, Trung T, Le A T, Pham V H et al 2019 J. Electron. Mater. 48 6231

    Article  CAS  Google Scholar 

  8. Tian Z M, Liu H B, Guo Z X, Gou W Y, Liang Z C, Qu Y Q et al 2020 Small 16 2004654

    Article  CAS  Google Scholar 

  9. Gao B, Zhai W J, Zhai Q and Shi Y Q 2020 ECS J. Solid State Sci. Technol. 9 044005

    Article  CAS  Google Scholar 

  10. Chen A, Long J, Li Z and Chen Y 2018 J. Inorg. Organomet. Polym. 28 1655

    Article  CAS  Google Scholar 

  11. Samir E, Salah M, Hajjiah A, Shehata N, Fathy M and Hamed A 2018 Polymers-Basel 10 609

    Article  Google Scholar 

  12. Cheng P, Guo P Q, Sun K, Zhao Y G, Liu D Q and He D Y 2021 J Membrane Sci. 619 118780

    Article  CAS  Google Scholar 

  13. Gonzalez E, Stuhr R, Vega J M, Garcia-Lecina E, Grande H J and Leiza J R 2021 Polymers-Basel 13 848

    Article  CAS  Google Scholar 

  14. Hemalatha K S and Rukmani K 2019 Mater. Res. Express 6 085008

    Article  CAS  Google Scholar 

  15. Li Y X, Zhang J F, Ni X J, Wang L K and Yang C 2018 Colloid Surface A 538 818

    Article  CAS  Google Scholar 

  16. Latha P, Prakash K and Karuthapandian S 2018 Res. Chem. Intermediat. 44 5223

    Article  CAS  Google Scholar 

  17. Fischer V, Lieberwirth I, Jakob G, Landfester K and Munoz-Espi R 2013 Adv. Funct. Mater. 23 451

    Article  CAS  Google Scholar 

  18. Hu Q, Huang B Y, Li Y, Zhang S M, Zhang Y X, Hua X H et al 2020 Sensor Actuat. B-Chem. 307 127638

    Article  Google Scholar 

  19. Li M M, Wang P F, Ji Z Z, Zhou Z R, Xia Y G, Li Y et al 2021 Appl. Catal. B-Environ. 289 120020

    Article  CAS  Google Scholar 

  20. Lv S W, Liu J M, Yang F E, Li C Y and Wang S 2021 Chem. Eng. J. 409 128269

    Article  CAS  Google Scholar 

  21. Lin Y, Wu S H, Yang C P, Chen M and Li X 2019 Appl. Catal. B-Environ. 245 71

    Article  CAS  Google Scholar 

  22. Park Y, Numan A, Ponomarev N, Iqbal J and Khalid M 2021 J. Environ. Chem. Eng. 9 106006

    Article  CAS  Google Scholar 

  23. Usman M, Adnan M, Ali S, Javed S and Akram M A 2020 ChemistrySelect 5 12618

    Article  CAS  Google Scholar 

  24. Jung H R, Kim K N and Lee W J 2019 Korean J. Chem. Eng. 36 807

    Article  CAS  Google Scholar 

  25. Lu X W, Li X Z, Qian J C, Miao N M, Yao C and Chen Z G 2015 J. Alloys Compd. 661 363

    Article  Google Scholar 

  26. Shibuya K, Nagao D, Ishii H and Konna M 2014 Polymer 55 535

    Article  CAS  Google Scholar 

  27. Li Y X, Wang Z Q, Wang Q, Wang C J and Xue G 2010 Macromolecules 43 4468

    Article  CAS  Google Scholar 

  28. Ge H L, Song Y L, Jiang L and Zhu D B 2006 Thin Solid Films 515 1539

    Article  CAS  Google Scholar 

  29. Li Y X, Hu Y H, Ye S J, Wu Y, Yang C and Wang L K 2016 New J. Chem. 40 10398

    Article  CAS  Google Scholar 

  30. Ksapabutr B, Gulari E and Wongkasemjit S 2006 Mater. Chem. Phys. 99 318

    Article  CAS  Google Scholar 

  31. Yoon K, Yang Y, Lu P, Wan D H, Peng H C, Masias K S et al 2012 Angew. Chem. Int. Ed. 51 9543

    Article  CAS  Google Scholar 

  32. Swatsitang E, Phokha S, Hunpratub S and Maensiri S 2016 Physica B 485 14

    Article  CAS  Google Scholar 

  33. Zhao W, Zhang Q Y, Chen T and Lu T L 2009 Mater. Chem. Phys. 113 428

    Article  CAS  Google Scholar 

  34. Kim B J, Oh S G, Han M G and Im S S 2002 Polymer 43 111

    Article  Google Scholar 

  35. Chen E C, Lin Y W and Wu T M 2009 Polym. Degrad. Stabil. 94 550

    Article  CAS  Google Scholar 

  36. Wang X J, Wang Q, Li F T, Yang W Y, Zhao Y, Hao Y J et al 2013 Chem. Eng. J. 234 361

    Article  CAS  Google Scholar 

  37. Li X Z, Shi H Y, Yan X Y, Zuo S X, Zhang Y Y, Chen Q et al 2019 J. Catal. 369 190

    Article  CAS  Google Scholar 

  38. Kumar E, Selvarajan P and Muthuraj D 2012 J. Mater. Sci. 47 7148

    Article  CAS  Google Scholar 

  39. Liu F, He Y J and Huh J S 2007 Solid State Phenom. 696 124

    Google Scholar 

  40. Philips-Invernizzi B, Dupont D and Caze C 2001 Opt. Eng. 40 1082

    Article  Google Scholar 

  41. Cao M Y, Wang K, Tudela I and Fan X F 2021 Appl. Surf. Sci. 536 147784

    Article  CAS  Google Scholar 

  42. Zhang X Y, Wu J N, Meng G H, Guo X H, Liu C and Liu Z Y 2016 Appl. Surf. Sci. 366 486

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported financially by the National Natural Science Foundation of China (Grant Nos. 51575058 and 51875052), and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Wang, T., Pan, J. et al. Fabrication, characterization and photocatalytic degradation activity of PS/PANI/CeO2 tri-layer nanostructured hybrids. Bull Mater Sci 45, 45 (2022). https://doi.org/10.1007/s12034-021-02635-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-021-02635-8

Keywords

Navigation