Skip to main content
Log in

Prediction of thermoelectric performance for monolayer HfNI

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

The full-potential linearization enhanced plane wave method and the semi-classical Boltzmann theory are used to calculate the thermoelectric properties of monolayer HfNI. For monolayer HfNI, the bandgap, which is calculated by Tran–Blaha-modified Becke–Johnson (TB-mBJ), is larger than that of generalized gradient approximation. There is no imaginary frequency for the phonon band structure of monolayer HfNI, which guarantees its dynamic stability. Although monolayer HfNI has two heavy elements Hf and I atoms, due to the shrinkage effect of lanthanides the phonon gap of monolayer HfNI becomes wide and the phonon dispersion phase space decreases, which suppresses the three-phonon dispersion channel. Moreover, monolayer HfNI has a higher lattice thermal conductivity. Finally, when the carrier concentration is 5 × 1018 cm–3, the ZTmax of n-type monolayer HfNI with TB-mBJ is 0.91 at 500 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Wang S, SunY Yang J, Duan B, Wu L, Zhang W et al 2016 Energ. Environ. Sci. 9 3436

    Article  Google Scholar 

  2. Feng Z, Zhang J, Yan Y, Zhang G, Wang C, Peng C et al 2017 Sci. Rep. 7 2572

    Article  Google Scholar 

  3. Shi X, Yang J, Salvador J R, Chi M, Cho J Y, Wang H et al 2011 J. Am. Chem. Soc. 133 7837

    Article  CAS  Google Scholar 

  4. Tritt T M 1999 Science 283 804

    Article  CAS  Google Scholar 

  5. Dahal T, Jie Q, Lan Y C, Guo C F and Ren Z F 2014 Phys. Chem. Chem. Phys. 16 18170

    Article  CAS  Google Scholar 

  6. Mallick M M and Vitta S 2017 Inorg. Chem. 56 5827

    Article  CAS  Google Scholar 

  7. Chen S D, He Y, Zong A, Zhang Y, Hashimoto M, Zhang B B et al 2017 Phys. Rev. B 96 081109

    Article  Google Scholar 

  8. Vikram and Kangsabanik J 2017 J. Mater. Chem. A 5 6131

  9. Xu B, Zhang J, Li X F, Yu G Q, Ma S S, Wang Y S et al 2014 Mater. Res. Innov. 18 104

    Article  Google Scholar 

  10. Xu B, Long C G, Wang Y S and Yi L 2012 Chem. Phys. Lett. 529 45

    Article  CAS  Google Scholar 

  11. Shuai J, Wang Y M, Kim H S, Liu Z H, Sun J Y, Chen S et al 2015 Acta Mater. 93 187

    Article  CAS  Google Scholar 

  12. Sui F, He H, Bobev S, Zhao J, Osterloh F E and Kauzlarich S M 2015 Chem. Mater. 27 2812

    Article  CAS  Google Scholar 

  13. Yan X L, Ikeda M, Zhang L, Bauer E, Rogl P, Giester G et al 2018 J. Mater. Chem. A 6 1727

    Article  CAS  Google Scholar 

  14. Tan M, Hao Y M, Yuan D and Chen J Y 2018 Appl. Surf. Sci. 443 11

    Article  CAS  Google Scholar 

  15. Choi H, Kim S J, Kim Y J, We J H, Oh M W and Cho B J 2017 J. Mater. Chem. C 5 8559

    Article  CAS  Google Scholar 

  16. Mehta R J, Zhang Y, Zhu H, Parker D S, Belley M, Singh D J et al 2012 Nano Lett. 12 4523

    Article  CAS  Google Scholar 

  17. Shafique A, Samad A and Shin Y H 2017 Phys. Chem. Chem. Phys. 19 20677

    Article  CAS  Google Scholar 

  18. Qin D, Ge X J, Ding G Q, Gao G Y and Lv J T 2017 RSC Adv. 7 47243

    Article  CAS  Google Scholar 

  19. Ding G Q, Gao G Y, Huang Z S, Zhang W X and Yao K L 2016 Nanotechnology 27 375703

    Article  Google Scholar 

  20. Zhang Z, Chen P, Duan X, Zang K, Luo J and Duan X 2017 Science 357 788

    Article  CAS  Google Scholar 

  21. Ding G Q, Wang C, Gao G Y, Yao K L, Dun C C, Feng C B et al 2018 Nanoscale 10 7077

    Article  CAS  Google Scholar 

  22. Xu B, Zhang J, Yu G Q, Ma S S, Wang Y S and Wang Y X 2018 J. Appl. Phys. 124 165104

    Article  Google Scholar 

  23. Zahid F and Lake R 2010 Appl. Phys. Lett. 97 212102

    Article  Google Scholar 

  24. Maassen J and Lundstrom M 2013 Appl. Phys. Lett. 102 093103

    Article  Google Scholar 

  25. Wickramaratne D, Zahid F and Lake R K 2015 J. Appl. Phys. 118 075101

    Article  Google Scholar 

  26. Peng B, Zhang H, Shao H, Xu K, Ni G, Li J and Soukoulis C M 2018 J. Mater. Chem. A 6 2018

    Article  CAS  Google Scholar 

  27. Hsu K F, Loo S, Guo F, Chen W, Dyck J S, Uher C et al 2004 Science 303 818

    Article  CAS  Google Scholar 

  28. Biswas K, He J Q, Blum I D, Wu C, Hogan T P, Seidman D N et al 2012 Nature 489 414

    Article  CAS  Google Scholar 

  29. Poudel B, Hao Q, Ma Y, Lan Y C, Minnich A, Yu B et al 2008 Science 320 634

    Article  CAS  Google Scholar 

  30. Wickramaratne D, Zahid F and Lake R K 2014 J. Chem. Phys. 140 124710

    Article  Google Scholar 

  31. Ma Y, Kuc A and Heine T 2017 J. Am. Chem. Soc. 139 11694

    Article  CAS  Google Scholar 

  32. Huang H H, Xing G, Fan X, Singh D J and Zheng W T 2019 J. Mater. Chem. C 7 5094

    Article  CAS  Google Scholar 

  33. Ouyang T, Jiang E, Tang C, Li J, He C and Zhong J 2018 J. Mater. Chem. A 6 21532

    Article  CAS  Google Scholar 

  34. Zhang S, Tanaka M, Zhu H and Yamanaka S 2013 Supercond. Sci. Technol. 26 085015

    Article  CAS  Google Scholar 

  35. Zhang S, Tanaka M, Watanabe E, Zhu H, Inumaru K and Yamanaka S 2013 Supercond. Sci. Technol. 26 122001

    Article  Google Scholar 

  36. Saito Y, Kasahara Y, Ye J, Iwasa Y and Nojima T 2015 Science 350 409

    Article  CAS  Google Scholar 

  37. Harshman D R and Fiory A T 2015 J. Supercond. Nov. Magn. 28 2967

    Article  CAS  Google Scholar 

  38. Snyder G J and Toberer E S 2008 Nat. Mater. 7 105

    Article  CAS  Google Scholar 

  39. Zhang S, Xu B, Lin Y, Nanc C and Liu W 2019 RSC Adv. 9 12886

    Article  CAS  Google Scholar 

  40. Wang C and Gao G Y 2020 J. Phys: Condens. Matter. 32 205503

    CAS  Google Scholar 

  41. Weht R, Filippetti A and Pickett W E 1999 Europhys. Lett. 48 320

    Article  CAS  Google Scholar 

  42. Hotehama K I, Koiwasaki T, Umemoto K, Yamanaka S and Tou H 2010 J. Phys. Soc. Jpn. 79 014707

    Article  Google Scholar 

  43. Akashi R, Nakamura K, Arita R and Imada M 2012 Phys. Rev. B 86 054513

    Article  Google Scholar 

  44. Blaha P, Schwarz K, Madsen G K H, Kvasnicka D and Luitz J 2002 Computer Code WIEN2K (Vienna University of Technology, 2002) Improved, updated Unix version of the original Blaha P, Schwarz K, Sorantin P and Trickey S B 1990 Comput. Phys. Commun. 59 399

    Article  Google Scholar 

  45. Allen P B 1996 in Chelikowsky J R, Louie S G (eds) Quantum theory of real materials (Klüwer, Boston) p 219

    Chapter  Google Scholar 

  46. Madsen G K H and Singh D J 2006 Comput. Phys. Commun. 175 67

    Article  CAS  Google Scholar 

  47. Pfitzner A 1994 Z. Krist. Cryst. Mater. 209 685

    Article  CAS  Google Scholar 

  48. Togo A, Oba F and Tanaka I 2008 Phys. Rev. B 78 134106

    Article  Google Scholar 

  49. Li W, Carrete J, Katcho N A and Mingo N 2014 Comput. Phys. Commun. 185 1747

    Article  CAS  Google Scholar 

  50. Zhao T Q, Sun Y J, Shuai Z G and Wang D 2017 Chem. Mater. 29 6261

    Article  CAS  Google Scholar 

  51. Ding G Q, Gao G Y, Yu L, Ni Y and Yao K L 2016 J. Appl. Phys. 119 025105

    Article  Google Scholar 

  52. Ding G Q, Chen J F, Yao K L and Gao G Y 2017 New J. Phys. 19 073036

    Article  Google Scholar 

  53. Li G P, Ding G Q and Gao G Y 2017 J. Phys. Condens. Matter 29 015001

    Article  Google Scholar 

  54. Tran F and Blaha P 2009 Phys. Rev. Lett. 102 226401

    Article  Google Scholar 

  55. Yun W S and Lee J D 2017 Sci. Rep. 7 17330

    Article  Google Scholar 

  56. Shen J J, Fang T, Fu T Z, Xin J Z, Zhao X B and Zhu T J 2019 J. Inorg. Mater. 34 260

    Article  Google Scholar 

  57. Liu P F, Bo T, Xu J, Yin W, Zhang J, Wang F et al 2018 Phys. Rev. B 98 235426

    Article  CAS  Google Scholar 

  58. Fang C M, Groot R A and Wiegers G A 2002 J. Phys. Chem. Solids 63 457

    Article  CAS  Google Scholar 

  59. Saha S K 2015 Phys. Rev. B 92 041202

    Article  Google Scholar 

  60. Pei Y, Chang C, Wang Z, Yin M, Wu M, Tan G et al 2016 J. Am. Chem. Soc. 138 16364

    Article  CAS  Google Scholar 

  61. Zhang S N, Zhu T J and Yang S H 2010 Acta Mater. 58 4160

    Article  CAS  Google Scholar 

  62. Qiu B and Ruan X 2009 Phys. Rev. B 80 165203

    Article  Google Scholar 

  63. Carrete J, Mingo N and Curtarolo S 2014 Appl. Phys. Lett. 105 101907

    Article  Google Scholar 

  64. Pei Y L and Liu Y 2012 J. Alloys Compd. 514 40

    Article  CAS  Google Scholar 

  65. Xu B, Song L G, Peng G H and Zhang J 2019 Phys. Lett. A 383 125864

    Article  CAS  Google Scholar 

  66. Chis V, Sklyadneva I Y, Kokh K A, Volodin V A, Tereshchenko O E and Chulkov E V 2012 Phys. Rev. B 86 174304

    Article  Google Scholar 

  67. Zhang J, Liu H J, Cheng L, Wei J, Shi J, Tang X F and Uher C 2014 J. Appl. Phys. 116 023706

    Article  Google Scholar 

  68. Wang B, Niu X N, Ouyang Y X, Zhou Q H and Wang J L 2018 J. Phys. Chem. Lett. 9 487

    Article  Google Scholar 

  69. Rusinov I P, Nechaev I A and Chulkov E V 2013 J. Exp. Theor. Phys. Lett. 116 1006

    Article  CAS  Google Scholar 

  70. Cahill D G, Watson S K and Pohl R O 1992 Phys. Rev. B 46 6131

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was sponsored by the National Natural Science Foundation of China, under Grant U1404108 and U1804149, and Basic and Frontier Technology Research program of Henan (162300410056).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, H., Xu, B. Prediction of thermoelectric performance for monolayer HfNI. Bull Mater Sci 45, 51 (2022). https://doi.org/10.1007/s12034-021-02634-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-021-02634-9

Keywords

Navigation