Skip to main content
Log in

Processability and performance property correlation for LDPE/PA6-based nanocomposite and its monolayer blown film for packaging application

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

A monolayer blown film, based on low-density polyethylene (LDPE)/polyamide 6(PA6)/nanoclay composite, is developed with enhanced barrier and mechanical properties. This is an attempt to develop specific monolayer film with comparable performance properties as that of multilayer packaging film, which poses considerable environmental challenge in terms of recycling. Blown film processability of neat PA6 is difficult due to its low melt strength characteristics. In order to mitigate this processing difficulty, LDPE was used as the matrix and PA6 as the minor phase. Two base compositions 80/20 and 65/35 (LDPE:PA6) with a constant 0.5 phr compatibilizer were used in this study. Based on these two base compositions, nanocomposites having 0.5, 1, 2 and 4 phr nanoclay were prepared for blown film processing. The nanocomposites were characterized by melt flow index (MFI), differential scanning calorimetry, small angle X-ray scattering (SAXS), wide-angle X-ray diffraction and scanning electron microscopy. Nanoclay helped in improving the compatibility of both the polymers. Morphological characterization of blends indicated predominantly exfoliated structure formation. In order to understand the effect of critical parameters, optimization was carried out using Taguchi method with the help of a L16 orthogonal array, considering four input parameters, such as, base compositions, nanoclay concentrations, nip roll speeds and blow up ratio. The parametric optimization study was performed against oxygen transmission rate, water vapour transmission rate and tensile strength of blown films. It was found that the barrier and mechanical property of the films are greatly affected by nip roll speed. Corresponding seal strength and transparency of prepared film showed values that are suitable for packaging application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Wagner J 2009 Multilayer flexible packaging: technology and applications for the food, personal care, and over-the-counter pharmaceutical industries. (Oxford: Elsevier Science) 1

  2. Ganpule H K and Khomami B 1999 J. Nonnewton Fluid Mech. 81 27

    Article  CAS  Google Scholar 

  3. Morris B A 2013 J. Plast Film Sheeting 29 189

    Article  CAS  Google Scholar 

  4. Tartakowski Z 2010 Resour. Conserv. Recycl. 55 409

    Article  Google Scholar 

  5. Mallick S, Kar P and Khatua B B 2012 J. Appl. Polym. Sci. 123 1801

    Article  CAS  Google Scholar 

  6. Brydson J A 1999 Plastics materials, 7th ed. (Oxford: Elsevier) 7 p 1

  7. Liesl K Massey 2003 Permeability properties of plastics and elastomers (Plastic Design Library, New York) 2nd ed. p. 1

  8. Huang C-H, Wu J-S and Huang C-C 2004 Polym. Int. 53 2099

    Article  CAS  Google Scholar 

  9. Ghaneh-Fard A 1999 J. Plast. Film Sheeting 15 194

    Article  CAS  Google Scholar 

  10. Fatahi S, Ajji A and Lafleur P G 2005 J. Plast. Film Sheeting 21 281

    Article  CAS  Google Scholar 

  11. Auksornkul S, Soontaranon S, Kaewhan C and Prasassarakich P 2018 J. Plast Film Sheeting 34 27

    Article  CAS  Google Scholar 

  12. La Mantia F P, Canfora L and Dintcheva N T 2005 Polym. Eng. Sci. 45 1297

    Article  Google Scholar 

  13. Lopez-Barron C R, Robledo-Ortiz J R, Rodrigue D and Gonzalez Nunez R 2007 J. Plast Film Sheeting 23 149

    Article  CAS  Google Scholar 

  14. Kamal M R, Jinnah I A and Utracki L A 1984 Polym. Eng. Sci. 24 1337

    Article  Google Scholar 

  15. Adame D and Beall G W 2009 Appl. Clay Sci. 42 545

    Article  CAS  Google Scholar 

  16. Hemmati M, Shariatpanahi H, Fereidoon A, Aalaie J and Ahangari M G 2012 Polym. Plast Technol. Eng. 51 1186

    Article  Google Scholar 

  17. Ammala A, Pas S J, Lawrence K A, Stark R, Webb R and Hill A J 2008 J. Mater. Chem. 18 911

    Article  CAS  Google Scholar 

  18. Chen H Y, Bishop M T, Landes B G and Chum S P 2006 J. Appl. Polym. Sci. 101 898

    Article  CAS  Google Scholar 

  19. Butler T I and Patel R 1993 J. Plast Film Sheeting 9 121

    Article  Google Scholar 

  20. Maalihan R D and Pajarito B B 2016 J. Plast Film Sheeting 32 124

    Article  CAS  Google Scholar 

  21. Galooyak S S, Dabir B, Nazarbeygi A E, Moeini A and Berahman B 2011 Pet Sci. Technol. 29 1110

    Article  Google Scholar 

  22. Li T, Turng L-S, Gong S and Erlacher K 2006 Polym. Eng. Sci. 46 1419

    Article  CAS  Google Scholar 

  23. Mohan T P and Kanny K 2013 J. Mater. Sci. 48 8292

    Article  CAS  Google Scholar 

  24. Kashyap M J and Ghosh A K 2013 J. Plast Film Sheeting 29 228

    Article  CAS  Google Scholar 

  25. Devaux E, Bourbigot S and El Achari A 2002 J. Appl. Polym. Sci. 86 2416

    Article  CAS  Google Scholar 

  26. Miri V, Elkoun S, Peurton F, Vanmansart C, Lefebvre J M, Krawczak P et al 2008 Macromolecules 41 9234

    Article  CAS  Google Scholar 

  27. Ma C C M, Kuo C T, Kuan H C, Vanmansarat C, Lefebvre J M, Krawcrzah P et al 2003 J. Appl. Polym. Sci. 88 1

    Article  Google Scholar 

  28. Aït-Kadi A, Marchal P, Choplin L, Chrissemant A S and Bousmina M 2002 Can. J. Chem. Eng. 80 1166

    Article  Google Scholar 

  29. Singh P and Ghosh A K 2014 Mater. Des. 55 137

    Article  CAS  Google Scholar 

  30. Fereydoon M, Tabatabaei S H and Ajji A 2015 J. Plast Film Sheeting 31 45

    Article  CAS  Google Scholar 

  31. Fasihi M and Abolghasemi M R 2012 J. Appl. Polym. Sci. 125 E2

    Article  CAS  Google Scholar 

  32. Dadbin S, Noferesti M and Frounchi M 2008 Macromol. Symp. 274 22

    Article  CAS  Google Scholar 

  33. Garofalo E, Fariello M L and Di Maio L 2013 Eur. Polym. J. 49 80

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Ministry of Human Resource Development (MHRD), India, for providing financial assistance to Purkayastha S. We thank IIT Delhi for providing the laboratory facilities. We would also like to thank Indian Institute of Packaging, Mumbai, for providing the characterization facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anup Kumar Ghosh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Purkayastha, S., Dutta, A., Ghosh, A.K. et al. Processability and performance property correlation for LDPE/PA6-based nanocomposite and its monolayer blown film for packaging application. Bull Mater Sci 45, 47 (2022). https://doi.org/10.1007/s12034-021-02627-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-021-02627-8

Keywords

Navigation