Skip to main content

Advertisement

Log in

Influence of different dopants and redox forms of PANI in its crystal structure, morphology, electrochemical energy storage to variable extent, unique properties and kinetics

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

The influences of base and salt forms, dopants used for protonation and different oxidation states of polyaniline (PANI) on its crystal structure, morphology, electrochemical stability, electrical conductivity and different potential-dependent energy storage by electrochemical processes were investigated by synthesizing PANI with two different acid dopants and in two different redox forms. The results reveal that, the methane sulphonic acid (MSA) causes more storage of energy in PANI. The reduced form of PANI furnishes high surface area and stores more energy than the respective oxidized form. The MSA-doped PANI exhibits an inimitable property of increase of specific capacitance (Cs) with increase in number of charge/discharge cycles in both oxidized and reduced forms. The structural changes of PANI after 25600 cycles were determined by IR spectroscopy, which confirmed that the irreversible formation of pernigraniline causes property degradation of PANI. The maximum energy storage parameters obtained from oxidized form of PANI doped with MSA (PANIMSA-Ox) are a Cs of 458 F g−1, a specific energy (Es) of 91 W h kg−1 and a specific power (Ps) of 2.0983 kW kg−1 at 1 A g−1. In addition, the PANIMSA-Ox exhibits an exceptional cyclic stability up to 25600 at 0.4 V s−1. The theoretical capacitance of PANI (2000 F g−1) is nearly reached with PANIMSA-Ox as it provided the Cs of an electrode of 1834.84 F g−1 at 1 A g−1. Most significantly, the PANIMSA-Ox presents the maximum of four faradaic couples and exceptional energy storage without using any redox supporting electrolytes.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Bhandari S 2018 Compos. Nanocompos. 23 60

    Google Scholar 

  2. Silva C H B, Ferreira A M D C. Constantino V R L and Temperini M L A 2014 J. Mater. Chem. A 2 8205

  3. de Azevedo W M, da Costa Lima A P and de Araujo E S 1999 Radiat. Prot. Dosimetry 84 77

    Article  Google Scholar 

  4. Peng X Y, Luan F, Liu X X, Diamond D and Lau K T 2009 Electrochim. Acta 54 6172

    Article  CAS  Google Scholar 

  5. Bocchini S, Chiolerio A, Porro S, Accardo D, Garino N, Bejtka K et al 2013 J. Mater. Chem. C 1 5101

    Article  CAS  Google Scholar 

  6. Abreu O, Larrieux J and Levon K 2012 Aspects on fundaments and applications of conducting polymers IntechOpen 4 67

  7. Uddin A J 2010 in Coatings for technical textile yarns (Amsterdam, The Netherlands: Woodhead Publishing) p 140

  8. Marmisolle W A and Azzaroni O 2016 Nanoscale 8 9890

    Article  CAS  Google Scholar 

  9. Dhand C, Dwivedi N, Mishra S, Solanki P R, Mayandi V, Beuerman R W et al 2015 Nanobiosensors Dis. Diagn. 4 25

    Google Scholar 

  10. Song E and Choi J W 2013 Nanomaterials 3 498

    Article  CAS  Google Scholar 

  11. Sadek A Z, Wlodarski W, Kalantar Zadeh K, Baker C and Kaner R B 2007 Sens. Actuators Phys. 139 53

  12. Bernard M C and Hugot Le Goff A 2006 Electrochim. Acta 52 595

    Article  CAS  Google Scholar 

  13. Li H, Wang J, Chu Q, Wang Z, Zhang F and Wang S 2009 J. Power Sources 190 578

    Article  CAS  Google Scholar 

  14. Liu P, Yan J, Guang Z, Huang Y, Li X and Huang W 2019 J. Power Sources 424 108

    Article  CAS  Google Scholar 

  15. Eftekhari A, Li L and Yang Y 2017 J. Power Sources 347 86

    Article  CAS  Google Scholar 

  16. Vonlanthen D, Lazarev P, See K A, Wudl F and Heeger A J 2014 Adv. Mater. 26 5095

    Article  CAS  Google Scholar 

  17. Gao M, Zhang G, Zhang G, Wang X, Wang S and Yang Y 2011 Polym. Degrad. Stab. 96 1799

    Article  CAS  Google Scholar 

  18. Chen W C, Wen T C and Gopalan A 2002 Electrochim. Acta 47 4195

    Article  CAS  Google Scholar 

  19. Guan H, Fan L Z, Zhang H and Qu X 2010 Electrochim. Acta 56 964

    Article  CAS  Google Scholar 

  20. Viswanathan A and Shetty A N 2018 Electrochim. Acta 289 204

    Article  CAS  Google Scholar 

  21. Viswanathan A, Prakashaiah B G, Subburaj V and Shetty A N 2019 J. Colloid Interface Sci. 545 82

    Article  CAS  Google Scholar 

  22. Jisha P, Suma M S and Murugendrappa M V 2021 Appl. Nanosci. 11 29

    Article  CAS  Google Scholar 

  23. Choudhury S P, Kumari N and Bhattacharjee A 2014 Cell 69 71

    Google Scholar 

  24. Qin W, Nagase T, Umakoshi Y and Szpunar J A 2007 J. Phys. Condens. Matter 19 236217

  25. Calhoun R B and Dunand D C 2000 in Dislocations in metal matrix composites: metal matrix composites (Pergamon, Oxford: Elsevier) p 27

  26. Gemeay A H, El Sharkawy R G, Mansour I A and Zaki A B 2007 J. Colloid Interface Sci. 308 385

    Article  CAS  Google Scholar 

  27. Butoi B, Groza A, Dinca P, Balan A and Barna V 2017 Polymers 9 732

    Article  Google Scholar 

  28. Feng X, Chen N, Zhou J, Li Y, Huang Z, Zhang L et al 2015 New J. Chem. 39 2261

    Article  CAS  Google Scholar 

  29. Jin Y and Jia M 2015 Colloids Surf. Physicochem. Eng. Asp. 464 17

    Article  CAS  Google Scholar 

  30. Bantawal H, Sethi M, Shenoy U S and Bhat D K 2019 ACS Appl. Nano Mater. 2 6629

    Article  CAS  Google Scholar 

  31. Thommes M, Kaneko K, Neimark A V, Olivier J P, Rodriguez-Reinoso F, Rouquerol J et al 2015 Pure Appl. Chem. 87 1051

    Article  CAS  Google Scholar 

  32. Han G, Liu Y, Zhang L, Kan E, Zhang S, Tang J et al 2014 Sci. Rep. 4 4824

    Article  Google Scholar 

  33. Wu C, Cai J, Zhang Q, Zhou X, Zhu Y, Shen P K et al 2015 ACS Appl. Mater. Interfaces 7 26512

    Article  CAS  Google Scholar 

  34. Wang J, Polleux J, Lim J and Dunn B 2007 J. Phys. Chem. C 111 14925

    Article  CAS  Google Scholar 

  35. Goldberg R N, Kishore N and Lennen R M 2002 J. Phys. Chem. Ref. Data 31 231

    Article  CAS  Google Scholar 

  36. Guthrie J P 1978 Can. J. Chem. 56 2342

    Article  CAS  Google Scholar 

  37. Siva T, Kamaraj K and Sathiyanarayanan S 2014 Prog. Org. Coat. 77 1095

    Article  CAS  Google Scholar 

  38. Viswanathan A, Gururaj Acharya M and Nityananda Shetty A 2020 J. Colloid Interface Sci. 575 377

    Article  CAS  Google Scholar 

  39. Santiago E I, Pereira E C and Bulhoes L O S 1998 Synth. Met. 98 87

    Article  CAS  Google Scholar 

  40. Mazeikien R and Malinauskas A 2000 React. Funct. Polym. 45 45

    Article  Google Scholar 

  41. Matveeva E S 1996 Synth. Met. 83 89

    Article  CAS  Google Scholar 

  42. Tang Y, Chen T, Yu S, Qiao Y, Mu S, Zhang S et al 2015 J. Power Sources 295 314

    Article  CAS  Google Scholar 

  43. Devillers N, Jemei S, Péra M C, Bienaime D and Gustin F 2014 J. Power Sources 246 596

    Article  CAS  Google Scholar 

  44. Yoo C Y, Park J, Yun D S, Yu J H, Yoon H, Kim J N et al J. Alloys Compd. 676 407

  45. EzhilArasi S, Ranjithkumar R, Devendran P, Krishnakumar M and Arivarasan A 2020 J. Mater. Sci. Mater. Electron. 31 7012

    Article  CAS  Google Scholar 

  46. Bhowmik K L, Deb K, Bera A, Nath R K and Saha B 2016 J. Phys. Chem. C 120 5855

    Article  CAS  Google Scholar 

  47. Viswanathan A and Shetty A N 2020 J. Energy Storage 27 101103

    Article  Google Scholar 

  48. Stoller M D and Ruoff R S 2010 Energy Environ. Sci. 3 1294

    Article  CAS  Google Scholar 

  49. Nystrom G, Marais A, Karabulut E, Wagberg L, Cui Y and Hamedi M M 2015 Nat. Commun. 6 7259

    Article  Google Scholar 

  50. Zhi M, Xiang C, Li J, Li M and Wu N 2013 Nanoscale 5 72

    Article  CAS  Google Scholar 

  51. Dunn B, Dunn B, Kamath H and Tarascon J 2011 Sci. Mag. 334 928

    CAS  Google Scholar 

  52. Liu C, Gillette E I, Chen X, Pearse A J, Kozen A C, Schroeder M A et al 2014 Nat. Nanotechnol. 9 1031

    Article  CAS  Google Scholar 

  53. Chen W, Rakhi R B and Alshareef H N 2013 J. Phys. Chem. C 117 15009

    Article  CAS  Google Scholar 

  54. Sivakkumar S R, Kim W J, Choi J A, MacFarlane D R, Forsyth M and Kim D W 2007 J. Power Sources 171 1062

    Article  CAS  Google Scholar 

  55. Sivaraman P, Kushwaha R K, Shashidhara K, Hande V R, Thakur A P, Samui A B et al 2010 Electrochim. Acta 55 2451

    Article  CAS  Google Scholar 

  56. Dhawale D S, Vinu A and Lokhande C D 2011 Electrochim. Acta 56 9482

    Article  CAS  Google Scholar 

  57. Khdary N H, Abdesalam M E and Enany G E 2014 J. Electrochem. Soc. 161 G63

    Article  CAS  Google Scholar 

  58. Gupta V and Miura N 2005 Electrochem. Solid-State Lett. 8 A630

    Article  CAS  Google Scholar 

  59. Dhawale D S, Dubal D P, Jamadade V S, Salunkhe R R and Lokhande C D 2010 Synth. Met. 160 519

    Article  CAS  Google Scholar 

  60. Dhawale D S, Salunkhe R R, Jamadade V S, Dubal D P, Pawar S M and Lokhande C D 2010 Curr. Appl. Phys. 10 904

    Article  Google Scholar 

  61. Bian C and Yu A 2010 Synth. Met. 160 1579

    Article  CAS  Google Scholar 

  62. Bian L J, Luan F, Liu S S and Liu X X 2012 Electrochim. Acta 64 17

    Article  CAS  Google Scholar 

  63. Gawli Y, Banerjee A, Dhakras D, Deo M, Bulani D, Wadgaonkar P et al 2016 Sci. Rep. 6 21002

    Article  CAS  Google Scholar 

  64. Li G R, Feng Z P, Zhong J H, Wang Z L and Tong Y X 2010 Macromolecules 43 2178

    Article  CAS  Google Scholar 

  65. Sk M M and Yue C Y 2014 J. Mater. Chem. A 2 2830

    Article  CAS  Google Scholar 

  66. Yang W, Gao Z, Song N, Zhang Y, Yang Y and Wang J 2014 J. Power Sources 272 915

    Article  CAS  Google Scholar 

  67. Ma Y, Hou C, Zhang H, Qiao M, Chen Y, Zhang H et al 2017 J. Mater. Chem. A 5 14041

    Article  CAS  Google Scholar 

  68. Sumboja A, Wang X, Yan J and Lee P S 2012 Electrochim. Acta 65 190

    Article  CAS  Google Scholar 

  69. Li X, Li X, Dai N, Wang G and Wang Z 2010 J. Power Sources 195 5417

    Article  CAS  Google Scholar 

  70. Wang X, Deng J, Duan X, Liu D, Guo J and Liu P 2014 J. Mater. Chem. A 2 12323

    Article  CAS  Google Scholar 

  71. Huang H, Zeng X, Li W, Wang H, Wang Q and Yang Y 2014 J. Mater. Chem. A 2 16516

    Article  CAS  Google Scholar 

  72. Zhao H B, Yuan L, Fu Z B, Wang C Y, Yang X, Zhu J Y et al 2016 ACS Appl. Mater. Interfaces 8 9917

    Article  CAS  Google Scholar 

  73. Pan L, Yu G, Zhai D, Lee H R, Zhao W, Liu N et al 2012 Proc. Natl. Acad. Sci. 109 9287

    Article  CAS  Google Scholar 

  74. Wang K, Wu H, Meng Y and Wei Z 2014 Small 10 14

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aranganathan Viswanathan.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 8000 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Viswanathan, A., Shetty, A.N. Influence of different dopants and redox forms of PANI in its crystal structure, morphology, electrochemical energy storage to variable extent, unique properties and kinetics. Bull Mater Sci 45, 60 (2022). https://doi.org/10.1007/s12034-021-02626-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-021-02626-9

Keywords

Navigation