Skip to main content

Advertisement

Log in

Infrared photon-assisted annealing for crystal engineering in perovskite solar cells

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

In this study, it was found that infrared-assisted annealing (IAA) was a novel and rapid method for growing of high-qualitied MAPbI3 films. Compared to traditional thermal annealing, this new strategy combined high-intensity infrared photon flux into annealing process, which achieved the high-qualitied MAPbI3 film with large crystalline grains and less surface defects. The reaction between MAI and PbI2 was characterized by confocal laser scanning and X-ray diffraction, which showed the addition of the infrared photons accelerated the reaction of the crystal, and the growth process of perovskite films with the increase of photon number is revealed. The simulation results revealed that infrared photons reduced the critical-free energy of crystallization of MAI and PbI2, leading to the rapid growth of grains. Fabricated perovskite devices based on MAPbI3 film obtained by this strategy produced optimized power conversion efficiency over 17% under only 5 min of IAA treatment, which increased by 2.6% compared to the thermal annealing. The efficiency improvement mainly attributed to better crystallinity, larger crystal grains under the IAA treatment, which had provided a new strategy for the future industrial production of perovskites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Andreani L C, Bozzola A, Kowalczewski P, Liscidini M and Redorici L 2019 Adv. Phys-X. 4 24

    Google Scholar 

  2. Alsalloum A Y, Turedi B, Zheng X P, Mitra S, Zhumekenov A A, Bakr O M et al 2020 ACS Energy Lett. 5 657

    Article  CAS  Google Scholar 

  3. Jahandar M, Khan N, Jahankhan M, Song C E, Lee H K, Moon S J et al 2019 J. Ind. Eng. Chem. 80 265

    Article  CAS  Google Scholar 

  4. Ji K, Yuan J B, Li F C, Shi Y, Ling X F, Ma W L et al 2020 J. Mater. Chem. A 8 8104

    Article  CAS  Google Scholar 

  5. Kim D, Jung H J, Park I J, Larson B W, Dunfield S P, Shin B et al 2020 Science 368 155

    Article  CAS  Google Scholar 

  6. Liu X X, Cheng Y H, Liu C, Zhang T X, Zhang N D, Zhang S W et al 2019 Energy Environ. Sci. 12 1622

    Article  Google Scholar 

  7. Snaith H J 2013 J. Phys. Chem. Lett. 4 3623

    Article  CAS  Google Scholar 

  8. Zheng X P, Hou Y, Bao C X, Yin J, Yuan F L, Huang Z R et al 2020 Nat. Energy 5 131

    Article  CAS  Google Scholar 

  9. Kojima A, Teshima K, Shirai Y and Miyasaka T 2009 J. Am. Chem. Soc. 131 6050

    Article  CAS  Google Scholar 

  10. Jeong J, Kim M, Seo J D, Ahlawat P, Mishra A, Seo J et al 2021 Nature 592 381

    Article  CAS  Google Scholar 

  11. Cheng Z, Niu X X, Fu Y H, Li N X, Chen H, Chen Y H et al 2019 Nat. Commun. 10 815

    Article  Google Scholar 

  12. Gillett A J, Privitera A, Dilmurat R, Karki A, Qian D P, Friend R H et al 2021 Nature 597 666

    Article  CAS  Google Scholar 

  13. Yang G, Ren Z W, Liu K, Qin M, Deng W Y, Zhang H K et al 2021 Nat. Photonics 15 681

    Article  CAS  Google Scholar 

  14. Chao L, Xia Y, Li B, Xing G, Chen Y and Huang W 2019 Chem 5 995

    Article  CAS  Google Scholar 

  15. Wang G, Liu D, Xiang J, Zhou D, Alameh K, Song Q et al 2016 RSC Adv. 6 43299

    Article  CAS  Google Scholar 

  16. Chen S S, Xiao X, Chen B, Leah L L, Zhao J J, Lin Y Z et al 2021 Sci. Adv. 7 4

    Google Scholar 

  17. Dualeh A, Tétreault N, Moehl T, Gao P, Nazeeruddin M K and Grätzel M 2014 Adv. Funct. Mater. 24 3250

    Article  CAS  Google Scholar 

  18. Kim M J, Kim H G, Kyoung S O, Jo Y H, Yoon H, Lee H et al 2017 ACS Nano 11 6057

    Article  CAS  Google Scholar 

  19. Zhang Y, Seo S, Lim S Y, Kim Y, Lee Y, Park N G et al 2020 ACS Energy Lett. 5 360

    Article  CAS  Google Scholar 

  20. Zhou J, Wu J, Li N, Li X, Zheng Y Z and Tao X 2019 J. Mater. Chem. A 7 17594

    Article  CAS  Google Scholar 

  21. Rolova L A, Anokhin D V, Piryazev A A, Luchkin S Y, Dremova N N, Troshin P A et al 2017 J. Phys. Chem. Lett. 8 67

    Article  Google Scholar 

  22. Bartholazzi G, Pereira R P and Cruz L R 2021 Mater. Res. 24 5

    Article  Google Scholar 

  23. Troughton J, Charbonneau C, Carnie M J, Worsley D A, Davies M L and Watson T M 2015 J. Mater. Chem. A 3 9123

    Article  CAS  Google Scholar 

  24. Sánchez S, Vallés-Pelarda M, Alberola-Borràs J A, Vidal R, Jerónimo-Rendón J J, Mora-Seró I et al 2019 Mater. Today 31 39

    Article  Google Scholar 

  25. Troughton J, Carnie M J, Davies M L, Charbonneau C, Jewell E H, Watson T M et al 2016 J. Mater. Chem. A 4 3471

    Article  CAS  Google Scholar 

  26. Sharma B, Singh S, Pareek S, Agasti A, Mallick S, Bhargava P et al 2019 Sol. Energy Mater. Sol. Cells 195 353

    Article  Google Scholar 

  27. Krishnamraju A, Amir H G, Blake M, Gautam G and Thad D 2018 J. Mater. Chem. A 6 9378

    Article  Google Scholar 

  28. Ummadisingu A, Steier L, Seo J Y, Matsui T, Abate A, Tress W et al 2017 Nature 545 208

    Article  CAS  Google Scholar 

  29. Balluffi R W, Allen S M and Carter W C (eds) 2005 Kinetics of Materials (Americans: Wiley & Sons)

  30. Antonio G, Esteban B, Loreta A, Muscarella M O, Efraín O M, Ullrich S et al 2021 Appl. Phys. Lett. 13 6854

    Google Scholar 

  31. Jiang L C, Lu J F, Rage S R, Sun J S, Lin X F, Huang W C et al 2019 Nano Energy 87 249

    Google Scholar 

  32. Bi D Q, Ahmed M E, Anders H and Boschloo G 2015 ACS Photonics 5 589

    Article  Google Scholar 

  33. Xiao X, Bao C X, Fang Y J, Ecker B R, Wang C C, Lin Y Z et al 2018 Adv. Mater. 30 1705176

    Article  Google Scholar 

  34. Shi J J, Zhang H Y, Xu X, Li D M, Luo Y H and Meng Q B 2016 Mater. Sci. 87 12

    Google Scholar 

  35. O’Regan B C, Barnes P R, Li X E, Law C, Palomares E and Marin-Beloqui J M 2015 J. Am. Chem. Soc. 137 508

    Article  Google Scholar 

  36. Montcada N F, Méndez M, Cho K T, Nazeeruddin M K and Palomares E 2018 Nanoscale 10 6155

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Grant No. 61804066), Natural Science Foundation of Jiangsu Province (Grants No. BK20180596, BK20180601), China Postdoctoral Science Foundation (2020M671602), Jiangsu Postdoctoral Science Foundation (2020K143B) and Lab and Equipment Management of Jiangnan University (JDSYS201906).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi Xi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Liu, G., Xi, X. et al. Infrared photon-assisted annealing for crystal engineering in perovskite solar cells. Bull Mater Sci 45, 54 (2022). https://doi.org/10.1007/s12034-021-02625-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-021-02625-w

Keywords

Navigation