Skip to main content
Log in

Highly efficient degradation of rhodamine B by α-MnO2 nanorods

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Manganese dioxide (α-MnO2) nanorods with diameters of about 5–15 nm and lengths of 100–150 nm were synthesized by a simple co-precipitation method, and the degradation mechanism of rhodamine B (RhB) at different pH levels was investigated. The α-MnO2 nanorods exhibited a high efficiency and rapid removal rate of RhB, which reached about 97.5% within 10 min when pH = 4 (and pH = 6.6) and 97.7% within 50 min when pH = 9 in the presence of H2O2. The results also indicated that a lower pH value is conducive to the blue shift of the characteristic peak of RhB dye and the attenuation of the characteristic peak intensity, which is mainly attributed to the combined effect of oxidative degradation and adsorption decolourization when pH is less than 9. Moreover, the α-MnO2 nanorod exhibits an excellent recyclability and catalytic stability. This research indicates that α-MnO2 nanorods have a potential application in practical dye pollutant treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Gagrani A, Zhou J W and Tsuzuki T 2018 Ceram. Int. 44 4694

    Article  CAS  Google Scholar 

  2. Zhao G X, Li J X, Ren X M, Hu J, Hu W P and Wang X K 2013 RSC Adv. 3 12909

    Article  CAS  Google Scholar 

  3. Sun H, Xu K L, Huang M J, Shang Y X, She P, Yin S Y et al 2015 Appl. Sur. Sci. 357 69

    Article  CAS  Google Scholar 

  4. Anandkumar J and Mandal B 2011 J. Hazard. Mater. 186 1088

    Article  CAS  Google Scholar 

  5. Yu K, Yang S G, He H, Sun C, Gu C G and Ju Y M 2009 J. Phys. Chem. A 113 10024

    Article  CAS  Google Scholar 

  6. Thabit M, Liu H L, Zhang J and Wan B 2017 J. Environ. Sci. 60 53

    Article  CAS  Google Scholar 

  7. Lee S Y, Kang D, Jeong S, Do H T and Kim J H 2020 ACS Omega 5 4233

    Article  CAS  Google Scholar 

  8. Yu C L, Li G, Wei L F, Fan Q Z, Shu Q and Yu J C 2014 Catal. Today 224 154

    Article  CAS  Google Scholar 

  9. Qu J Y, Shi L, He C X, Gao F, Li B B, Zhou Q et al 2014 Carbon 66 485

    Article  CAS  Google Scholar 

  10. Sun M, Lan B, Lin T, Cheng G, Ye F, Yu L et al 2013 CrystEngComm 15 7010

    Article  CAS  Google Scholar 

  11. Li K Z, Chen J J, Peng Y, Lin W C, Yan T and Li J H 2017 J. Mater. Chem. A 5 20911

    Article  CAS  Google Scholar 

  12. He B B, Gao C, Zhao S F, Zeng X H, Li Y F, Yang R N et al 2019 J. Solid State Chem. 269 305

    Article  CAS  Google Scholar 

  13. Boyom-Tatchemo F W, Devred F, Ndiffo-Yemeli G, Laminsi S and Gaigneaux E M 2020 Appl. Catal. B Environ. 260 118159

    Article  CAS  Google Scholar 

  14. Husnain S M, Asim U, Yaqub A, Shahzad F and Abbas N 2020 New J. Chem. 44 6096

    Article  CAS  Google Scholar 

  15. Khalid S and Cao C B 2017 New J. Chem. 41 5794

    Article  CAS  Google Scholar 

  16. Maria-Hormigos R, Pacheco M, Jurado-Sánchez B and Escarpa A 2018 Environ. Sci. Nano 5 2993

    Article  CAS  Google Scholar 

  17. Kang Y G, Yoon H, Lee C S, Kim E J and Chang Y S 2019 Water Res. 151 413

    Article  CAS  Google Scholar 

  18. Huang J Z, Zhong S F, Dai Y F, Liu C C and Zhang H C 2018 Environ. Sci. Technol. 52 11309

    Article  CAS  Google Scholar 

  19. Saputra E, Muhammad S, Sun H, Ang H M, Tade M and Wang S 2013 Sci. Technol. 47 5882

    Article  CAS  Google Scholar 

  20. Meng Y T, Song W Q, Huang H, Ren Z, Chen S Y and Suib S L 2014 J. Am. Chem. Soc. 136 11452

    Article  CAS  Google Scholar 

  21. Zhang B T, Cheng G, Ye W J, Zheng X Y, Liu H F, Sun M et al 2016 Dalton Trans. 45 18851

    Article  CAS  Google Scholar 

  22. Gangwar D and Rath C 2021 Appl. Surf. Sci. 557 149693

    Article  CAS  Google Scholar 

  23. Khan Y, Durrani S K, Mehmood M and Khan M R 2011 J. Mater. Res. 26 2268

    Article  CAS  Google Scholar 

  24. Subramanian V, Zhu H W, Vajtai R, Ajayan P M and Wei B Q 2005 J. Phys. Chem. B 109 20207

    Article  CAS  Google Scholar 

  25. Mishra K, Poudel T N, Basavegowda N and Lee Y R 2016 J. Catal. 344 273

    Article  CAS  Google Scholar 

  26. Wang Y R, Zhang X F, He X, Zhang W, Zhang X X and Lu C H 2014 Carbohyd. Polym. 110 302

    Article  CAS  Google Scholar 

  27. Mahamallik P, Saha S and Pal A 2015 Chem. Eng. J. 276 155

    Article  CAS  Google Scholar 

  28. Panimalar S, Uthrakumar R, Selvi E T, Gomathy P, Inmozhi C, Kaviyarasu K et al 2020 Surf. Interfaces 20 100512

    Article  CAS  Google Scholar 

  29. Sing K S W 1982 Pure Appl. Chem. 54 2201

    Article  Google Scholar 

  30. John R E, Chandran A, Thomas M, Jose J and George K C 2016 Appl. Surf. Sci. 367 43

    Article  CAS  Google Scholar 

  31. Huang C, Wang Y L, Gong M, Wang W, Mu Y and Hu Z H 2020 Purif. Technol. 230 115877

    Article  CAS  Google Scholar 

  32. Watanabe T, Takizawa T and Honda K 1977 J. Phys. Chem. 81 1845

    Article  CAS  Google Scholar 

  33. Han J, Wang M G, Cao S Y, Fang P, Lu S, Chen R et al 2013 J. Mater. Chem. A 1 13197

    Article  CAS  Google Scholar 

  34. Pham A L T, Doyle F M and Sedlak D L 2012 Environ. Sci. Technol. 46 1055

    Article  CAS  Google Scholar 

  35. Zhang W X, Yang Z H, Wang X, Zhang Y C, Wen X G and Yang S H 2006 Catal. Commun. 7 408

    Article  Google Scholar 

  36. He Y, Jiang D B, Chen J, Jiang D Y and Zhang Y X 2018 J. Colloid Interf. Sci. 510 207

    Article  CAS  Google Scholar 

  37. Khraisheh M A M, Al-Ghouti M A, Allen S J and Ahmad M N M 2004 Water Environ. Res. 76 2655

    Article  CAS  Google Scholar 

  38. Deng J, Ge Y J, Tan C Q, Wang H Y, Li Q S, Zhou S Q J et al 2017 Chem. Eng. J. 330 1390

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China [grant number 51602140] and the Natural Science Foundation of Liaoning Province (grant number 2019-ZD-0189).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shumin Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Guan, A., Wang, J. et al. Highly efficient degradation of rhodamine B by α-MnO2 nanorods. Bull Mater Sci 45, 35 (2022). https://doi.org/10.1007/s12034-021-02620-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-021-02620-1

Keywords

Navigation