Skip to main content
Log in

Exploration of the role of disorder and the behaviour of the surface state in the three-dimensional topological insulator—Bi2Se3

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Here we present an overview of some of our recent experimental investigation on the high conducting topologically protected surface state properties of a 3D topological insulator (TI), Bi2Se3, in both bulk and single-crystals form. Selenium (Se) vacancies in Bi2Se3 are natural bulk charge dopants, hence these vacancies act as non-magnetic defects in these materials. We use Bi2Se3 material as a prototype of a 3D TI) material with the disorder, for exploring the effects of non-magnetic disorder on the topological conducting surface states. Using a sensitive non-contact mutual inductance-based measurement technique, we identify distinct signatures of surface and bulk contributions to electrical conductivity in a TI Bi2Se3. We show a temperature-dependent transformation from surface to bulk dominated electrical conductivity and unravel the unusual resurfacing of a surface-dominated electrical conductivity at high temperatures. We show that the surface to bulk conductivity transformation is related to a unique activation energy scale Δ in the range of tens of meV, which is smaller than the bulk-insulating gap in Bi2Se3. This gap, we believe is related to a defect state created by the charge dopant Se vacancies in Bi2Se3. We also see interesting effects related to disorder-related coupling of the surface states. The Se vacancies which dope the bulk of the Bi2Se3 crystal lead to an unusual inductive-type coupling of the high conducting 2D-like surface states. The coupling leads to a critical thickness feature in bulk TI crystal, which is distinct from the direct coupling limit in TI’s. We find that if the thickness of the Bi2Se3 crystal exceeds this critical thickness, then the surface states are no longer inductively coupled. To probe the temperature-related surface to bulk transformation in conductivity of Bi2Se3, we use a high sensitivity magneto-optical imaging technique to directly image the distribution of current in single crystal and a thin film of Bi2Se3. At low temperatures, we observed a strong sheet current from the topological surface state. Above 80 K, we report that the emergence of a temperature-dependent inhomogeneous, grainy current distribution state in Bi2Se3 single crystals. The grainy state has mixed regions with high and low current densities. The observation of the emergence of a temperature-dependent inhomogeneous phase in the TI suggests the possibility of a disorder-driven spontaneous phase separation scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Moore J E 2010 Nature 464 194

    Article  CAS  Google Scholar 

  2. Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045

    Article  CAS  Google Scholar 

  3. Fu L, Kane C. L and Mele E J 2007 Phys. Rev. Lett. 98 106803

  4. Hsieh D, Xia Y, Wray L, Qian D, Pal A, Dil J H et al 2009 Science 323 919

    Article  CAS  Google Scholar 

  5. Zhao L, Deng H, Korzhovska I, Chen Z, Konczykowski M, Hruban A et al 2014 Nat. Mater. 13 580

    Article  CAS  Google Scholar 

  6. Xia Y, Qian D, Hsieh D, Wray L, Pal A, Lin H et al 2009 Nat. Phys. 5 398

    Article  CAS  Google Scholar 

  7. Chen Y L, Analytis J G, Chu J H, Liu Z K, Mo S K, Qi X L et al 2009 Science 325 178

    Article  CAS  Google Scholar 

  8. Cheng P, Song C, Zhang T, Zhang Y, Wang Y, Jia J F et al 2010 Phys. Rev. Lett. 105 076801

  9. Zhang H, Liu C X, Qi X L, Dai X, Fang Z and Zhang S C 2009 Nat. Phys. 5 438

    Article  CAS  Google Scholar 

  10. Xie Z, He S, Chen C, Feng Y, Yi H, Liang A et al 2014 Nat. Commun. 5 3382

    Article  Google Scholar 

  11. Pan Z H, Fedorov A V, Gardner D, Lee Y S, Chu S and Valla T 2012 Phys. Rev. Lett. 10 187001

  12. Qu D X, Hor Y S, Xiong J, Cava R J and Ong N P 2010 Science 329 821

    Article  CAS  Google Scholar 

  13. Jauregui L A, Pettes M T, Rokhinson L P, Shi L and Chen Y P 2015 Nat. Nanotechnol. 5 8452

    CAS  Google Scholar 

  14. Roushan P, Seo J, Parker C V, Hor Y S, Hsieh D, Qian D et al 2009 Nature 460 1106

    Article  CAS  Google Scholar 

  15. Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057

    Article  CAS  Google Scholar 

  16. Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von Molnár V S, Roukes M L et al 2001 Science 294 1488

    Article  CAS  Google Scholar 

  17. Kim D K, Lai Y, Diroll B, Murray C and Kagan C F 2012 Nat. Commun. 3 1216

    Article  Google Scholar 

  18. Leek P J, Fink J M, Blais A, Bianchetti R, Göppl M, Gambetta J M et al 2007 Science 318 1889

    Article  CAS  Google Scholar 

  19. Larson P, Greanya V A, Tonjes W C, Liu R, Mahanti S D and Olson CG 2001 Phys. Rev. B 65 085108

  20. Nechaev I A, Hatch R C, Bianchi M, Guan D, Friedrich C, Aguilera I et al 2013 Phys. Rev. B 87 121111.

  21. Hyde G R, Beale H A, Spain I L and Woollam J A 1974 J. Phys. Chem. Solids 35 1719

    Article  CAS  Google Scholar 

  22. Benia H M, Lin C, Kern K and Ast C R 2011 Phys. Rev. Lett. 107 177602

  23. Zhang J M, Ming W, Huang Z, Liu G B, Kou X, Fan Y et al 2013 Phys. Rev. B 88 235131

  24. Butch N P, Kirshenbaum K, Syers P, Sushkov A B, Jenkins G S, Drew H D et al 2010 Phys. Rev. B 81 241301

  25. Li H D, Wang Z Y, Kan X, Guo X, He H T,Wang Z et al 2010 New J. Phys. 12 103038

  26. Devidas T R, Amaladass E P, Sharma S, Rajaraman R, Sornadurai D, Subramanian N et al 2014 Euro. Phys. Lett. 108 67008

    Google Scholar 

  27. Amaladass E P, Devidas T R, Sharma S, Sundar C S, Mani A and Bharathi A 2016 J. Phys: Condens. Matter 28 075003

  28. Brahlek M, Koirala N, Salehi M, Bansal N and Oh S 2014 Phys. Rev. Lett. 113 026801

  29. Fatemi V, Hunt B, Steinberg H, Eltinge S L, Mahmood F, Butch N P et al 2014 Phys. Rev. Lett. 113 20680

    Article  Google Scholar 

  30. Chong S K, Han K B, Sparks T D and Deshpande V V 2019 Phys. Rev. Lett. 123 036804

  31. Zhang Y, He K, Chang C Z, Song C L, Wang L L, Chen X et al 2010 Nat. Phys. 6 584

    Article  Google Scholar 

  32. Garate I and Franz M 2010 Phys. Rev. Lett. 104 146802

  33. Qi X L, Li R, Zang J and Zhang S C 2009 Science 323 1184

    Article  CAS  Google Scholar 

  34. Wang Y H, Kirtley J R, Katmis F, Jarillo-Herrero P, Moodera J S and Moler K A 2015 Science 349 6251

    Google Scholar 

  35. Dellabetta B, Hughes T L, Gilbert M J and Lev B L 2012 Phys. Rev. B 85 205442

  36. Liu Y, Besbas J, Wang Y, He P, Chen M, Zhu D et al 2018 Nat. Commun. 9 2492

    Article  Google Scholar 

  37. Seifert P, Vaklinova K, Ganichev S, Kern K, Burghard M and Holleitner A W 2018 Nat. Commun. 9 331

    Article  Google Scholar 

  38. McIver J W, Hsieh D, Steinberg H, Jarillo-Herrero P and Gedik N 2012 Nat. Nano Technol. 7 96

    Article  CAS  Google Scholar 

  39. Mondal M, Kamlapure A, Chand M, Saraswat G, Kumar S, Jesudasan J et al 2011 Phys. Rev. lett. 106 047001

  40. Kamlapure A, Mondal M, Chand M, Mishra A, Jesudasan J, Bagwe V et al 2010 Appl. Phys. Lett. 96 072509

  41. Duan M C, Liu Z L, Ge J F, Tang Z J, Wang G Y, Wang Z X et al 2017 Rev. Sci. Inst. 88 073902

  42. Jash A, Nath K, Devidas T R, Bharathi A and Banerjee SS 2019 Phys. Rev. Appl. 12 014056

  43. Jash A, Ghosh S, Bharathi A and Banerjee S S 2020 Phys. Rev. B 101 165119

  44. Ni N, Tillman M E, Yan J Q, Kracher A, Hannahs S T, Bud’Ko S L et al 2008 Phys. Rev. B 78 214515

  45. Bag V, Vinod K, Bharathi A and Banerjee S S 2016 New J. Phys. 18 063025

  46. Wu L, Brahlek M, Aguilar R V, Stier A V, Morris C M, Lubashevsky Y et al 2013 Nat. Phys. 9 410

    Article  CAS  Google Scholar 

  47. Hajlaoui M, Papalazarou E, Mauchain J, Lantz G, Moisan N, Boschetto D et al 2012 Nano Lett. 12 3532

    Article  CAS  Google Scholar 

  48. Viol Barbosa C E, Shekhar C, Yan B, Ouardi S, Ikenaga E, Fecher G H et al 2013 Phys. Rev. B 88 195128

  49. Kong D, Cha J J, Lai K, Peng H, Analytis J G, Meister S et al 2011 ACS Nano 5 4698

    Article  CAS  Google Scholar 

  50. Banerjee S S, Goldberg S, Soibel A, Myasoedov Y, Rappaport M, Zeldov E et al 2004 Phys. Rev. Lett. 93 097002

  51. Kumar A, Jash A, Tamegai T and Banerjee S S 2020 Phys. Rev. B 101 184516

  52. Tokunaga M, Tokunaga Y and Tamegai T 2004 Phys. Rev. Lett. 93 037203

  53. Jash A, Kumar A, Ghosh S, Bharathi A and Banerjee S S 2021 Sci. Rep. 1 11

    Google Scholar 

  54. Wijngaarden R J, Spoelder H J, Surdeanu R and Griessen R 1996 Phys. Rev. B 54 6742

    Article  CAS  Google Scholar 

  55. Vojta T 2013 AIP Conf. Proc. 1550 188

    Article  Google Scholar 

  56. Lüpke F, Eschbach M, Heider T, Lanius M, Schüffelgen P, Rosenbach D et al 2017 Nat. Commun. 8 15704

    Article  Google Scholar 

Download references

Acknowledgements

SSB acknowledges funding support from the Department of Science and Technology (DST), India (AMT-TSDP and Imprint-II programs), IIT Kanpur and the help of Ankit Kumar from IIT Kanpur, India (present address: Technion—Israel Institute of Technology, Israel). SSB also thanks T R Devidas from IGCAR Kalpakam, India (present address: Hebrew University Jerusalem, Israel). SG thanks CSIR, India, for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S S BANERJEE.

Additional information

This article is part of the special issue on ‘Quantum materials and devices’.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

JASH, A., GHOSH, S., BHARATHI, A. et al. Exploration of the role of disorder and the behaviour of the surface state in the three-dimensional topological insulator—Bi2Se3. Bull Mater Sci 45, 17 (2022). https://doi.org/10.1007/s12034-021-02616-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-021-02616-x

Keywords

Navigation