Skip to main content
Log in

Growth of Co-doped ZnO thin films exhibiting room temperature ferromagnetism using a low-cost spray pyrolysis technique

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Cobalt (Co)-doped zinc oxide (ZnO) diluted magnetic semiconductor thin films were grown using a low-cost spray pyrolysis technique. X-ray diffraction (XRD) studies show that the films crystallize in the pure wurtzite structure. No evidence of the formation of secondary phases like Co clusters, CoO or Co3O4 were detected from XRD studies. Scanning electron microscopy studies show uniform growth over the substrates and energy dispersive analysis of X-ray studies confirm the presence of Co in ZnO. The absorption bands peaked at the wavelength ~658, 613 and 567 nm in the optical transmission spectra show that the Co enters the tetrahedral sites of the wurtzite structure in the desired Co2+ oxidation state. The strong optical absorption in the band tail region indicates the existence of magnetic ion-induced charge-transfer states (CTSs) just below the band edge. The photoluminescence from ZnO is found to be completely quenched on Co doping due to the occurrence of CTSs. Magnetic studies show that all the films possess ferromagnetism at room temperature with Curie temperature well above the room temperature. The grown films have potential applications in spintronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Zutic I, Fabian J and Sarma S D 2004 Rev. Mod. Phys. 76 323

    Article  CAS  Google Scholar 

  2. Ohno H, Shen A, Matsukura F, Oiwa A, Endo A, Katsumoto S et al 1996 Appl. Phys. Lett. 69 363

    Article  CAS  Google Scholar 

  3. Dietl T, Ohno H, Matsukura F, Cibert J and Ferrand D 2000 Science 287 1019

    Article  CAS  Google Scholar 

  4. Sato K and Katayama-Yoshida H 2001 Jpn. J. Appl. Phys. 40 L334

    Article  CAS  Google Scholar 

  5. Yin Z, Chen N, Chai C and Yang F 2004 J. Appl. Phys. 96 5093

    Article  CAS  Google Scholar 

  6. Huang H H, Yang C A, Huang P H, Lai C H, Chin T S, Huang H E et al 2007 J. Appl. Phys. 101 09H116

    Article  CAS  Google Scholar 

  7. Pal B and Giri P K 2010 J. Appl. Phys. 108 084322

  8. Yang S, Man B Y, Liu M, Chen C S, Gao X G, Wang C C et al 2010 Physica B 405 4027

    Article  CAS  Google Scholar 

  9. Dhruvashi and Shishodia P K 2016 Thin Solid Films 612 55

  10. Simimol A, Anappara A A, Greulich-Weber S, Chowdhury P and Barshiliaa H C 2015 J. Appl. Phys. 117 214310

  11. Yang S, Lv R, Wang C, Liu Y and Song Z 2013 J. Alloys Comp. 579 628

    Article  CAS  Google Scholar 

  12. Jin Z, Fukumura T and Kawasaki M 2010 Appl. Phys. Lett. 78 3824

    Article  CAS  Google Scholar 

  13. Singh P, Deepak, Goyal R N, Pandey A K and Kaur D 2008 J. Phys.: Condens. Matter 20 315005

  14. Zhao L L, Wang J Y, Wang X L, Cheng Z X, Wang J, Yin N et al 2015 J. Alloys Comp. 628 303

    Article  CAS  Google Scholar 

  15. Kim K J and Park Y R 2002 Appl. Phys. Lett. 81 1420

    Article  CAS  Google Scholar 

  16. Kittilstved K R, Liu W K and Gamelin D R 2006 Nat. Mater. 5 291

    Article  CAS  Google Scholar 

  17. Yamamoto S 2012 J. Appl. Phys. 111 094310

  18. Noras J M and Allen J W 1980 J. Phys. C 13 3511

    Article  CAS  Google Scholar 

  19. Heitz R, Hoffmann A and Broser I 1993 Phys. Rev. B 48 8672

    Article  CAS  Google Scholar 

  20. Bishop S G, Robbins D J and Dean P J 1980 Solid State Commun. 33 119

    Article  CAS  Google Scholar 

  21. Muller B, Roussos G and Schulz H J 1985 J. Cryst. Growth 72 360

    Article  Google Scholar 

  22. Juhl A, Hoffmann A, Bimberg D and Schulz H J 1987 Appl. Phys. Lett. 50 1292

    Article  CAS  Google Scholar 

  23. Liu W K, Salley G M and Gamelin D R 2005 J. Phys. Chem. B 109 14486

    Article  CAS  Google Scholar 

  24. Fleurov V N and Kikoin K A 1982 Solid State Commun. 42 353

    Article  CAS  Google Scholar 

  25. Mizokawa T and Fujimori A 1993 Phys. Rev. B 48 14150

    Article  CAS  Google Scholar 

  26. Blinowski J, Kacman P and Dietl T 2002 Mater Res. Soc. Symp. Proc. 690 109

    CAS  Google Scholar 

  27. Xiao Z, Matsui H, Hasuike N, Harima H and Tabata H 2008 J. Appl. Phys. 103 043504

  28. Zheng H 1995 Physica B 212 125

    Article  CAS  Google Scholar 

  29. Powell R J and Spicer W E 1970 Phys. Rev. B 2 2182

    Article  Google Scholar 

  30. Thakur V, Verma U P and Rajaram P 2014 Electron. Mater. Lett. 10 1143

    Article  CAS  Google Scholar 

  31. Beaulac R, Archer P I and Gamelin D R 2008 J. Solid State Chem. 181 1582

    Article  CAS  Google Scholar 

  32. Xiao Z, Matsui H, Katayama K, Miyajima K, Itoh T and Tabata H 2010 J. Appl. Phys. 108 13502

    Article  CAS  Google Scholar 

  33. Khan Z A and Ghosh S 2011 Appl. Phys. Lett. 99 042504

  34. Sarma S D, Hwang E H and Kaminski A 2003 Phys. Rev. B 67 155201

  35. Coey J M D, Venkatesan M and Fitzgerald C B 2005 Nat. Mater. 4 173

    Article  CAS  Google Scholar 

  36. Petit L, Schulthess T C, Svane A, Temmerman W M and Szotek Z 2004 Res. Soc. Symp. Proc. 825E 9

    Google Scholar 

  37. Wang Q, Sun Q, Jena P and Kawazoe Y 2004 Phys. Rev. B 70 052408

Download references

Acknowledgements

We are grateful to IIC, IIT Roorkee and SAIF, Punjab University, Chandigarh, for providing experimental facilities like XRD, SEM/EDAX and superconducting quantum interference device magnetometer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vikas Thakur.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thakur, V., Verma, U. Growth of Co-doped ZnO thin films exhibiting room temperature ferromagnetism using a low-cost spray pyrolysis technique. Bull Mater Sci 45, 32 (2022). https://doi.org/10.1007/s12034-021-02614-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-021-02614-z

Keywords

Navigation