Skip to main content
Log in

Weak intermolecular interactions of cysteine on BNNT, BNAlNT and BC2NNT: a DFT investigation

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

The study of intermolecular interactions is of great importance. This study attempted to quantitatively examine the interactions between cysteine (C3H7NO2S) amino acid molecule with pristine boron nitride, Al-doped boron nitride and carbon boron nitride nanotubes (BNNT, BNAlNT, BC2NNT, respectively) in vacuum. Quantum mechanical studies of such systems are possible in the density functional theory (DFT) framework. For this purpose, various functionals, such as B3LYP-D3, ωB97XD and M062X, have been used. One of the most suitable basis functionals for the systems studied in this research is 6-311G(d), which has been used in both optimization calculations and calculations related to wavefunction analyses. The main part of this work is the study of various analyses that reveal the nature of the intermolecular interactions between the two components introduced above. The results of conceptual DFT, natural bond orbital, non-covalent interactions and quantum theory of atoms in molecules were consistent and in favour of physical adsorption in all systems. Al-doped nanotube provides more adsorption energy than others. The highest occupied molecular orbital and lowest unoccupied molecular orbital energy gaps were as follows: BNNT: 6.545, BNAlNT: 8.127 and BC2NNT: 7.027 eV at B3LYP-D3/6-311G(d) model chemistry. The sensitivity of the adsorption increased when an amino acid molecule interacted with doped BNNT, and could be used to design a nanocarrier for cysteine amino acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Reference

  1. Clausius R 1857 Ann. Phys. 176 353

    Article  Google Scholar 

  2. Van der Waals J D 1873 Over de continuïteit van den gas- en vloeistoftoestand p 86

  3. London F 1930 Z. Phys. 63 245

    Article  CAS  Google Scholar 

  4. London F 1937 Trans. Faraday Soc. 33 8b

    Article  Google Scholar 

  5. Spencer N D and Moore J H 2001 Encycl. Chem. Phys. Phys. Chem. 3 2421

    Google Scholar 

  6. Dykstra C E 1988 Studies in Physical and Theoretical Chemistry p 131

  7. Elrod M J and Saykally R J 1994 Chem. Rev. 94 1975

    Article  CAS  Google Scholar 

  8. Stone A J and Alderton M 1985 Mol. Phys. 56 1047

    Article  CAS  Google Scholar 

  9. Hayes I and Stone A 1984 Mol. Phys. 53 83

    Article  CAS  Google Scholar 

  10. Jeziorski B, Moszynski R and Szalewicz K 1994 Chem. Rev. 94 1887

    Article  CAS  Google Scholar 

  11. Stone A J 1993 Chem. Phys. Lett. 211 101

    Article  CAS  Google Scholar 

  12. Kreek H and Meath W J 1969 J. Chem. Phys. 50 2289

    Article  CAS  Google Scholar 

  13. Knowles P J and Meath W J 1986 Mol. Phys. 59 965

    Article  CAS  Google Scholar 

  14. Wheatley R J and Meath W J 1994 Chem. Phys. 179 341

    Article  CAS  Google Scholar 

  15. Van Duijneveldt F B, van Duijneveldt-van de Rijdt J G and van Lenthe J H 1994 Chem. Rev. 94 1873

  16. Iijima S 1991 Nature 354 56

    Article  CAS  Google Scholar 

  17. Iijima S and Ichihashi T 1993 Nature 363 603

    Article  CAS  Google Scholar 

  18. Geim A K and Novoselov K S 2010 The rise of grapheme. Nanoscience and technology: a collection of reviews from Nature journal (Singapore: World Scientific) p 11

    Google Scholar 

  19. Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I et al 2005 Nature 438 197

    Article  CAS  Google Scholar 

  20. Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V et al 2004 Science 306 666

    Article  CAS  Google Scholar 

  21. Novoselov K S, Jiang D, Schedin F, Booth T, Khotkevich V, Morozov S et al 2005 Proc. Natl. Acad. Sci. 102 10451

    Article  CAS  Google Scholar 

  22. Guerra V, Wan C and McNally T 2019 Prog. Mater. Sci. 100 170

    Article  CAS  Google Scholar 

  23. Li J-L, Yin J-H, Ji T, Feng Y, Liu Y-Y, Zhao H et al 2019 Mater. Lett. 234 74

    Article  CAS  Google Scholar 

  24. Yang X, Guo Y, Han Y, Li Y, Ma T, Chen M et al 2019 Compos. Part B-Eng. 175 107070

    Article  Google Scholar 

  25. Zhi C, Bando Y, Tang C, Kuwahara H and Golberg D 2009 Adv. Mater. 21 2889

    Article  CAS  Google Scholar 

  26. Watanabe K, Taniguchi T and Kanda H 2004 Nat. Mater. 3 404

    Article  CAS  Google Scholar 

  27. Lin Y and Connell J W 2012 Nanoscale 4 6908

    Article  CAS  Google Scholar 

  28. Peer D, Karp J M, Hong S, Farokhzad O C, Margalit R and Langer R 2017 Nat. Nanotechnol. 2 751

    Article  Google Scholar 

  29. Rad A S and Aghaei S M 2018 Curr. Appl. Phys. 18 133

    Article  Google Scholar 

  30. Torchilin V P 2012 Adv. Drug Deliv. Rev. 64 302

    Article  Google Scholar 

  31. Mohammadi M D and Hamzehloo M 2018 Comput. Theor. Chem. 1144 26

    Article  Google Scholar 

  32. Doust Mohammadi M and Abdullah H Y 2020 ChemistrySelect 5 12115

    Article  CAS  Google Scholar 

  33. Doust Mohammadi M and Abdullah H Y 2020 Can. J. Chem. 99 51

    Article  Google Scholar 

  34. Mohammadi M D and Abdullah H Y 2020 J. Mol. Model. 26 287

    Article  Google Scholar 

  35. Mohammadi M D and Abdullah H Y 2020 Theor. Chem. Acc. 139 158

    Article  Google Scholar 

  36. Mohammadi M D and Abdullah H Y 2021 Struct. Chem. 32 481

    Article  Google Scholar 

  37. Mohammadi M D and Abdullah H Y 2021 Comput. Theor. Chem. 1193 113047

    Article  Google Scholar 

  38. Mohammadi M D, Salih I H and Abdullah H Y 2020 J. Comput. Biophys. Chem. 20 23

    Article  Google Scholar 

  39. Mohammadi M D, Salih I H and Abdullah H Y 2020 Mol. Simul. 46 1405

    Article  CAS  Google Scholar 

  40. Mohammadi M D and Abdullah H Y 2021 Solid State Commun. 337 114440

    Article  Google Scholar 

  41. Mohammadi M D, Abdullah H Y, Bhowmick S and Biskos G 2021 Comput. Theor. Chem. 1198 113168

    Article  CAS  Google Scholar 

  42. Mohammadi M D, Abdullah H Y, Bhowmick S and Biskos G 2021 Can. J. Chem. 99 733

    Article  CAS  Google Scholar 

  43. Mohammadi M D, Abdullah H Y, Biskos G and Bhowmick S 2021 B Mater. Sci. 44 198

    Article  CAS  Google Scholar 

  44. Mohammadi M D, Abdullah H Y, Biskos G and Bhowmick S 2021 CR Chim. 24 291

    Google Scholar 

  45. Mohammadi M D, Abdullah H Y, Kalamse V and Chaudhari A 2021 Comput. Theor. Chem. 1204 113391

    Article  CAS  Google Scholar 

  46. Mohammadi M D, Abdullah H Y and Suvitha A 2021 Iran J. Sci. Technol. A 45 1287

    Article  Google Scholar 

  47. Schlegel H B 1982 J. Comput. Chem. 3 214

    Article  CAS  Google Scholar 

  48. Perdew J P, Ernzerhof M and Burke K 1996 J. Chem. Phys. 105 9982

    Article  CAS  Google Scholar 

  49. Adamo C and Barone V 1999 J. Chem. Phys. 110 6158

    Article  CAS  Google Scholar 

  50. Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    Article  CAS  Google Scholar 

  51. Zhao Y and Truhlar D G 2008 Theor. Chem. Acc. 120 215

    Article  CAS  Google Scholar 

  52. Zhao Y and Truhlar D G 2006 J. Phys. Chem. A 110 13126

    Article  CAS  Google Scholar 

  53. Chai J-D and Head-Gordon M 2008 Phys. Chem. Chem. Phys. 10 6615

    Article  CAS  Google Scholar 

  54. Grimme S 2006 J. Comput. Chem. 27 1787

    Article  CAS  Google Scholar 

  55. Grimme S, Antony J, Ehrlich S and Krieg H 2010 J. Chem. Phys. 132 154104

    Article  Google Scholar 

  56. Grimme S, Ehrlich S and Goerigk L 2011 J. Comput. Chem. 32 1456

    Article  CAS  Google Scholar 

  57. Frisch M J , Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R et al 2016 Gaussian 16 Rev. C.01. Wallingford, CT

  58. Binning R Jr and Curtiss L 1990 J. Comput. Chem. 11 1206

    Article  CAS  Google Scholar 

  59. Curtiss L A, McGrath M P, Blaudeau J P, Davis N E, Binning R C Jr and Radom L 1995 J. Chem. Phys. 103 6104

    Article  CAS  Google Scholar 

  60. Frisch M J, Pople J A and Binkley J S 1984 J. Chem. Phys. 80 3265

    Article  CAS  Google Scholar 

  61. Hay P J 1977 J. Chem. Phys. 66 4377

    Article  CAS  Google Scholar 

  62. Blaudeau J-P, McGrath M P, Curtiss L A and Radom L 1997 J. Chem. Phys. 107 5016

    Article  CAS  Google Scholar 

  63. Krishnan R, Binkley J S, Seeger R and Pople J A 1980 J. Chem. Phys. 72 650

    Article  CAS  Google Scholar 

  64. McGrath M P and Radom L 1991 J. Chem. Phys. 94 511

    Article  CAS  Google Scholar 

  65. Raghavachari K and Trucks G W 1989 J. Chem. Phys. 91 1062

    Article  Google Scholar 

  66. Russo T V, Martin R L and Hay P J 1994 J. Chem. Phys. 101 7729

    Article  CAS  Google Scholar 

  67. Goerigk L and Grimme S 2011 Phys. Chem. Chem. Phys. 13 6670

    Article  CAS  Google Scholar 

  68. Mardirossian N and Head-Gordon M 2017 Mol. Phys. 115 2315

    Article  CAS  Google Scholar 

  69. Brakestad A, Jensen S R, Wind P, D’Alessandro M, Genovese L, Hopmann K H et al 2020 J. Chem. Theory Comput. 16 4874

    Article  CAS  Google Scholar 

  70. Mitra H and Roy T K 2020 J. Phys. Chem. A 124 9203

    Article  CAS  Google Scholar 

  71. Goerigk L, Hansen A, Bauer C, Ehrlich S, Najibi A and Grimme S 2017 Phys. Chem. Chem. Phys. 19 32184

    Article  CAS  Google Scholar 

  72. Dennington R, Keith T A and Millam J M 2016 Semichem. Inc. Shawnee Mission KS GaussView, version 6.0, vol 16 (Shawnee Mission KS: Semichem Inc.)

  73. Andrienko G 2010 Chemcraft: Graphical software for visualization of quantum chemistry computations

  74. Foster A J and Weinhold F 1980 J. Am. Chem. Soc. 102 7211

    Article  CAS  Google Scholar 

  75. Reed A E and Weinhold F 1983 J. Chem. Phys. 78 4066

    Article  CAS  Google Scholar 

  76. Carpenter J and Weinhold F 1988 J. Mol. Struct.: Theochem. 169 41

    Article  Google Scholar 

  77. Lu T and Chen F 2012 J. Comput. Chem. 33 580

    Article  Google Scholar 

  78. O’Boyle N M, Tenderholt A L and Langner K M 2008 J. Comput. Chem. 29 839

    Article  Google Scholar 

  79. Mayer I and Valiron P 1998 J. Chem. Phys. 109 3360

    Article  CAS  Google Scholar 

  80. Boys S F and Bernardi F 1970 Mol. Phys. 19 553

    Article  CAS  Google Scholar 

  81. Alkorta I, Trujillo C, Elguero J and Solimannejad M 2011 Theor. Chem. 967 147

    Article  CAS  Google Scholar 

  82. Thomas L H 1927 The calculation of atomic fields Mathematical proceedings of the Cambridge philosophical society (Cambridge University Press) p. 542

  83. Fermi E 1927 Rend. Accad. Naz. Lincei 6 5

    Google Scholar 

  84. Dirac P A 1930 Note on exchange phenomena in the Thomas atom (Cambridge University Press) p. 376

  85. Slater J C 1951 Phys. Rev. 81 385

    Article  CAS  Google Scholar 

  86. Hohenberg P and Kohn W 1964 Phys. Rev. 136 B864

    Article  Google Scholar 

  87. Kohn W and Sham L J 1965 Phys. Rev. 140 A1133

    Article  Google Scholar 

  88. Becke A D 2014 J. Chem. Phys. 140 18A301

    Article  Google Scholar 

  89. Burke K and Wagner L O 2013 Int. J. Quantum Chem. 113 96

    Article  CAS  Google Scholar 

  90. Becke A D 1988 Phys. Rev. A 38 3098

    Article  CAS  Google Scholar 

  91. Gill P M 1996 Mol. Phys. 89 433

    Article  CAS  Google Scholar 

  92. Vosko S H, Wilk L and Nusair M 1980 Can. J. Phys. 58 1200

    Article  CAS  Google Scholar 

  93. Perdew J P 1986 Phys. Rev. B 33 8822

    Article  CAS  Google Scholar 

  94. Lee C, Yang W and Parr R G 1988 Phys. Rev. B 37 785

    Article  CAS  Google Scholar 

  95. Perdew J P and Zunger A 1981 Phys. Rev. B 23 5048

    Article  CAS  Google Scholar 

  96. Cole L A and Perdew J 1982 Phys. Rev. A 25 1265

    Article  CAS  Google Scholar 

  97. Perdew J P and Wang Y 1992 Phys. Rev. B 45 13244

    Article  CAS  Google Scholar 

  98. Becke A D 1997 J. Chem. Phys. 107 8554

    Article  CAS  Google Scholar 

  99. Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J et al 1992 Phys. Rev. B 46 6671

    Article  CAS  Google Scholar 

  100. Paier J, Marsman M and Kresse G 2007 J. Chem. Phys. 127 024103

    Article  Google Scholar 

  101. Yanai T, Tew D P and Handy N C 2004 Chem. Phys. Lett. 393 51

    Article  CAS  Google Scholar 

  102. Leininger T, Stoll H, Werner H-J and Savin A 1997 Chem. Phys. Lett. 275 151

    Article  CAS  Google Scholar 

  103. Bhatta R S, Pellicane G and Tsige M 2015 Comput. Theor. Chem. 1070 14

    Article  CAS  Google Scholar 

  104. Sekar N, Katariya S, Rhyman L, Alswaidan I A and Ramasami P 2019 J. Fluoresc. 29 241

    Article  Google Scholar 

  105. Tao J, Perdew J P, Staroverov V N and Scuseria G E 2003 Phys. Rev. Lett. 91 146401

    Article  Google Scholar 

  106. National Center for Biotechnology Information. PubChem Compound Summary for CID 5862, Cysteine. Accessed 22 November, 2021

  107. Kohl D 1990 Sensor Actuat. B-Chem. 1 158

    Article  CAS  Google Scholar 

  108. Foresman J B and Frisch A 1996 Exploring chemistry with electronic structure methods: a guide to using Gaussian. 2nd Editon Gaussian

  109. Geerlings P, De Proft F and Langenaeker W 2003 Chem Rev. 103 1793

    Article  CAS  Google Scholar 

  110. Islam N and Kaya S 2018 Conceptual density functional theory and its application in the chemical domain (CRC Press)

    Book  Google Scholar 

  111. Chermette H 1999 J. Comput. Chem. 20 129

    Article  CAS  Google Scholar 

  112. Pearson R G 2005 J. Chem. Sci. 117 369

    Article  CAS  Google Scholar 

  113. Ayers P W, Anderson J S and Bartolotti L J 2005 Int. J. Quantum Chem. 101 520

    Article  CAS  Google Scholar 

  114. Bultinck P, Cardenas C, Fuentealba P, Johnson P A and Ayers P W 2013 J. Chem. Theory Comput. 9 4779

    Article  CAS  Google Scholar 

  115. Bultinck P, Cardenas C, Fuentealba P, Johnson P A and Ayers P W 2014 J. Chem. Theory Comput. 10 202

    Article  CAS  Google Scholar 

  116. Parr R G, Donnelly R A, Levy M and Palke W E 1978 J. Chem. Phys 68 3801

    Article  CAS  Google Scholar 

  117. Parr R G and Pearson R G 1983 J. Am. Chem. Soc. 105 7512

    Article  CAS  Google Scholar 

  118. Parr R G and Yang W 1984 J. Am. Chem. Soc. 106 4049

    Article  CAS  Google Scholar 

  119. Yang W, Parr R G and Pucci R 1984 J. Chem. Phys. 81 2862

    Article  CAS  Google Scholar 

  120. Morell C, Grand A and Toro-Labbe A 2005 J. Phys. Chem. A 109 205

    Article  CAS  Google Scholar 

  121. Levy M 1982 Phys. Rev. A 26 1200

    Article  CAS  Google Scholar 

  122. Parr R G, Szentpály L V and Liu S 1999 J. Am. Chem. Soc. 121 1922

    Article  CAS  Google Scholar 

  123. Bredas J-L 2014 Mater. Horiz. 1 17

    Article  CAS  Google Scholar 

  124. Koopmans T 1934 Physica 1 104

    Article  Google Scholar 

  125. Janak J 1978 Phys. Rev. B 18 7165

    Article  CAS  Google Scholar 

  126. Schmidt M W, Hull E A and Windus T L 2015 J. Phys. Chem. A 119 10408

    Article  CAS  Google Scholar 

  127. Mulliken R S 1932 Phys. Rev. 41 49

    Article  CAS  Google Scholar 

  128. Löwdin P-O 1955 Phys. Rev. 97 1474

    Article  Google Scholar 

  129. Coulson C A 1939 Proc. R Soc. Lon. Ser-A 169 413

    Article  CAS  Google Scholar 

  130. Mulliken R S 1955 J. Chem. Phys. 23 1833

    Article  CAS  Google Scholar 

  131. Mayer I 1983 Chem. Phys. Lett. 97 270

    Article  CAS  Google Scholar 

  132. Mayer I 2012 Chem. Phys. Lett. 544 83

    Article  CAS  Google Scholar 

  133. Bridgeman A J, Cavigliasso G, Ireland L R and Rothery J 2001 J. Chem. Soc. Dalton T 2095

  134. Wiberg K B 1968 Tetrahedron 24 1083

    Article  CAS  Google Scholar 

  135. Sizova O V, Skripnikov L V and Sokolov A Y 2008 J. Mol. Struct. Theochem. 870 1

    Article  CAS  Google Scholar 

  136. Bader R F 1985 Accounts Chem. Res. 18 9

    Article  CAS  Google Scholar 

  137. Bader R 1990 Atoms in molecules : a quantum theory p 238

  138. Bader R F W, Popelier P L A and Keith T A 1994 Angew. Chem. Int. Ed. Engl. 33 620

    Article  Google Scholar 

  139. Matta C 2006 Hydrogenhydrogen bonding: the non-electrostatic limit of closed-shell interaction between two hydro. Hydrogen bonding—new insights: (Springer) p 337

  140. Grabowski S J 2012 J Phys. Chem. A 116 1838

    Article  CAS  Google Scholar 

  141. Bohórquez H J, Boyd R J and Matta C F 2011 J. Phys. Chem. A 115 12991

    Article  Google Scholar 

  142. Johnson E R, Keinan S, Mori-Sánchez P, Contreras-García J, Cohen A J and Yang W 2010 J. Am. Chem. Soc. 132 6498

    Article  CAS  Google Scholar 

  143. Contreras-García J, Johnson E R, Keinan S, Chaudret R, Piquemal J-P, Beratan D N et al 2011 J. Chem. Theory. Comput. 7 625

    Article  Google Scholar 

Download references

Acknowledgement

We would like to thank the Solid-State Theory Group at the Physics Department at the Università Degli Studi di Milano-Italy, for providing computational facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hewa Y Abdullah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doust Mohammadi, M., Abdullah, H.Y. Weak intermolecular interactions of cysteine on BNNT, BNAlNT and BC2NNT: a DFT investigation. Bull Mater Sci 45, 33 (2022). https://doi.org/10.1007/s12034-021-02611-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-021-02611-2

Keywords

Navigation