Skip to main content

Advertisement

Log in

Effect of excessive amount of (Na, K) ion ratio on structural, optical and electrical properties of K0.5Na0.5NbO3 ceramics prepared by solid-state route

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Non-toxic lead-free potassium sodium niobate (K0.5Na0.5NbO3) ceramics were manufactured by using solid-state reaction method. The influences of excessive alkali metal (Na, K) ions concentration (0–20%) on their structural and electro-optical properties have been examined systematically. The structural properties confirmed the perovskite phase having orthorhombic crystal structure without any secondary phase even on the addition of excessive quantities of (Na, K) ions. Optical properties revealed decrease in optical bandgap energy with increase in the (Na, K) ions ratio. Photoluminescence spectrum shows the emission band in the UV–visible region, which makes KNN a suitable candidate for telecommunication devices, optical storage technology and LEDs. Impedance study revealed the negative temperature coefficient of resistance and non-Debye nature of the synthesized samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Rafiq M A, Costa M E, Tkach A and Vilarinho P M 2015 Cryst. Growth Des. 15 1289

    Article  CAS  Google Scholar 

  2. Panda P and B Sahoo 2015 Ferroelectrics 474 128

  3. Bell A J and O Deubzer 2018 MRS Bull. 43 581

  4. Shandilya M and Kaur G A 2019 J. Solid State Chem. 280 120988

  5. Kumari P, Shandilya M, Lal M and Rai R 2017 in Smart materials for smart living (New York: Nova Science Publishers, Inc.)

  6. Kaur G A, Kumar S and Shandilya M 2020 J. Mater. Sci. Mater. Elect. 31 20303

    Article  Google Scholar 

  7. Sharma S, Kumari S, Rai R and Sharma D K 2016 Int. Ferroelectr. 168 115

    Article  CAS  Google Scholar 

  8. Chandrasekhar M and Kumar P 2015 Cerm. Int. 41 5574

    Article  CAS  Google Scholar 

  9. Kumar P and Pattanaik M 2013 Cerm. Int. 39 65

    Article  CAS  Google Scholar 

  10. Zhang Y, Li L, Shen B and Zhai J 2015 Dalt. Trans. 44 7797

    Article  CAS  Google Scholar 

  11. Yang J, Zhang F, Yang Q, Liu Z, Li Y, Liu Y et al 2016 Appl. Phys. Lett. 108 182904

  12. Kumar S, Shandilya M, Thakur S and Thakur N 2018 J. Sol Gel Sci. Technol. 88 646

    Article  CAS  Google Scholar 

  13. Sharma S, Shandilya M and Rai R 2015 J. Mater. Sci. Mater. Elect. 26 9484

    Article  CAS  Google Scholar 

  14. Zhao T, Scholl A, Zavaliche F, Lee K, Barry M, Doran A et al 2006 Nat. Mater. 5 823

    Article  CAS  Google Scholar 

  15. Shafiee E, Chermahini M D, Doostmohammadi A, Nilforoushan M R and Zehipour B 2019 Cerm. Int. 45 22203

    Article  CAS  Google Scholar 

  16. Shandilya M, Kaur G A and Rai R 2021 Mater. Chem. Phys. 263 124422

  17. Chaiyo N, Muanghlua R, Wongprasert Y, Seeharaj P and Vittayakorn N 2013 Int. Ferroelectr. 149 128

    Article  CAS  Google Scholar 

  18. Shandilya M and Verma R 2021 J. Magnet. Magnet. Mater. 527 167782

  19. Wang Y, Yi Z, Li Y, Yang Q and Wang D 2007 Cerm. Int. 33 1611

    Article  CAS  Google Scholar 

  20. Skidmore T A, Comyn T P, Bell A J, Zhu F and Milne S J 2011 IEEE Trans. Ultrason. Ferroelectr. Freq. Contr. 58 1819

    Article  Google Scholar 

  21. Kumar S, Shandilya M, Thakur S, Thakur N and Kaur G A 2019 J. Sol-Gel Sci. Technol. 92 215

    Article  CAS  Google Scholar 

  22. Patterson A L 1939 Phys. Rev. 56 978

    Article  CAS  Google Scholar 

  23. Shandilya M, Thakur S and Rai R 2019 Ferroelect. Lett. Sect. 46 8

    Article  CAS  Google Scholar 

  24. Khorrami G H, Kompany A and Zak A K 2015 Funct. Mater. Lett. 8 1550030

    Article  CAS  Google Scholar 

  25. Kumar S and Thakur N 2019 J. Elect. Mater. 48 6203

    Article  CAS  Google Scholar 

  26. Kumar S and Thakur N 2021 Bull. Mater. Sci. 44 51

    Article  CAS  Google Scholar 

  27. Birey H 1978 J. Appl. Phys. 49 2898

    Article  CAS  Google Scholar 

  28. Shi W, Feng Y, Lu T, Lu Y, Shen J, Xue J et al 2019 J. Mater. Sci. Mater. Elect. 30 9

    Article  CAS  Google Scholar 

  29. Kamal A, Rafiq M A, Rafiq M N, Usman M, Waqar M and Anwar M S 2016 Appl. Phys. A 122 1037

    Article  Google Scholar 

  30. Hussain A, Kim J S, Rahman J U, Maqbool A, Song T K, Kim W J et al 2014 Ferroelectrics 464 107

    Article  CAS  Google Scholar 

  31. Zhai Y, Feng Y, Du J, Xue J, Shen J, Lu Y et al 2019 J. Mater. Sci. Mater. Electr. 30 4352

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Shammi Kumar is grateful to Dr Pankaj Sharma and Dr Ragini Raj Singh from JUIT Waknaghat, Solan, HP, for their support to record the optical and photoluminescence spectra of the material.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shammi Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Shandilya, M., Kaur, G. et al. Effect of excessive amount of (Na, K) ion ratio on structural, optical and electrical properties of K0.5Na0.5NbO3 ceramics prepared by solid-state route. Bull Mater Sci 45, 30 (2022). https://doi.org/10.1007/s12034-021-02606-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-021-02606-z

Keywords

Navigation