Skip to main content

Advertisement

Log in

Density functional theory study of electronic and optical properties of ScN nitride in NaCl-B1, CsCl-B2, ZB-B3 and NiAs-B8 phases

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

The structural, mechanical, electronic and optical properties of ScN nitride in NaCl-B1, CsCl-B2, zinc-blende (ZB)-B3 and NiAs-B8 phases were investigated by first-principle density functional theory. Mechanical properties are investigated, and the ScN in NaCl-B1, ZB-B3 and NiAs-B8 phases are mechanical stable indicating possible experimental synthesis except for CsCl. We note that NaCl-B1 possesses the highest hardness of 24.8 GPa. Band structures and density of states analysis indicate that NaCl-B1, ZB-B3 and NiAs-B8 are semi-conductors with energy bandgaps of 0.623, 2.517 and 0.471 eV, while CsCl is metallic with no bandgap. The electron charge density analysis for all ScN phases shows a charge transfer between Sc and N attributing to their electronegativity. The optical properties of ScN phases are investigated. The maximum reflectivity of ScN in CsCl-B2, NaCl-B1, NiAs-B8 and ZB-B3 phases are 0.5 to 0.56 with a photon energy range of 7.5–10 eV. The ScN phases indicate the strongest absorption in the energy range of 0–4 eV. The refractive index for ScN in the energy range of 7.5 to 10 eV phases indicates that the extinction coefficient k is greater than the phase velocity n, showing no light propagation. On the other hand, the phase velocity n is greater than the extinction coefficient k at 0 to 4 eV and 11 to 15 eV energy ranges for all the ScN phases with excellent light propagation, consistent with the conduction curves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Xue W, Yu Y, Zhao Y, Han H and Gao T 2009 Comput. Mater. Sci. 45 1025

    Article  CAS  Google Scholar 

  2. Bai X and Kordesch M E 2001 Appl. Surf. Sci. 175 499

    Article  Google Scholar 

  3. Takeuchi N 2002 Phys. Rev. B 65 45204

    Article  Google Scholar 

  4. Uǧur S and Soyalp F 2008 Solid State Commun. 147 198

    Article  Google Scholar 

  5. Maachou A, Amrani B and Driz M 2007 Phys. B Condens. Matter 388 384

    Article  CAS  Google Scholar 

  6. Travaglini G, Marabelli F, Monnier R, Kaldis E and Wachter P 1986 Phys. Rev. B 34 3876

    Article  CAS  Google Scholar 

  7. Stampfl C, Mannstadt W, Asahi R and Freeman A J 2001 Phys. Rev. B 63 155106

    Article  Google Scholar 

  8. Lambrecht W R L 2000 Phys. Rev. B 62 13538

    Article  CAS  Google Scholar 

  9. Gu Z, Edgar J H, Pomeroy J, Kuball M and Coffey D W 2004 J. Mater. Sci. Mater. Electron 15 555

    Article  CAS  Google Scholar 

  10. Duman S, Bagcı S, Tütüncü H M, Ugur G and Srivastava G P 2006 Diam. Relat. Mater. 15 1175

    Article  CAS  Google Scholar 

  11. Meenaatci A T A, Rajeswarapalanichamy R and Iyakutti K 2013 J. At. Mol. Sci. 4 321

    Google Scholar 

  12. Saha S, Sinha T P and Mookerjee A 2000 Phys. Rev. B-Condens. Matter 62 8828

    Article  CAS  Google Scholar 

  13. Hohenberg P and Kohn W 1964 Phys. Rev. 136 B864

    Article  Google Scholar 

  14. Perdew J, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    Article  CAS  Google Scholar 

  15. Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M I J, Refson K et al 2005 Zeitschrift Fur Krist. 220 567

    CAS  Google Scholar 

  16. Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J et al 2002 J. Phys. Condens. Matter 14 2717

    Article  CAS  Google Scholar 

  17. Vanderbilt D 1990 Phys. Rev. B 41 7892

    Article  CAS  Google Scholar 

  18. Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188

    Article  Google Scholar 

  19. Gall D, Petrov I, Hellgren N, Hultman L, Sundgren J E and Greene J E 1998 J. Appl. Phys. 84 6034

    Article  CAS  Google Scholar 

  20. Brik M G and Ma C G 2012 Comput. Mater. Sci. 51 380

    Article  CAS  Google Scholar 

  21. Mnisi B O, Benecha E M and Tibane M M 2021 Intermetallics 137 107272

  22. Popoola A I and Lowther J E 2014 Int. J. Mod. Phys. B 28 1450066

    Article  Google Scholar 

  23. Heid R, Bohnen K P, Renker B, Wolf T and Schober H 2005 Phys. Rev. B 71 92302

    Article  Google Scholar 

  24. Ding W J, Yi J X, Chen P, Li D L, Peng L M and Tang B Y 2012 Solid State Sci. 14 555

    Article  CAS  Google Scholar 

  25. Zhou L, Körmann F, Holec D, Bartosik M, Grabowski B, Neugebauer J et al 2014 Phys. Rev. B 90 184102

    Article  Google Scholar 

  26. Born M 1940 Math. Proc. Cambridge Philos. Soc. 36 160

    Article  CAS  Google Scholar 

  27. Born M and Huang K 1956 Theory of crystal lattices (Oxford: Clarendon Press)

    Google Scholar 

  28. Hill R 1952 Proc. Phys. Soc. Sect. A 65 349

    Article  Google Scholar 

  29. Petrman V and Houska J 2013 J. Mater. Sci. 48 7642

    Article  CAS  Google Scholar 

  30. Voigt W 1928 Lehrbuch der kristallphysik Teubner Leipzig p 962

  31. Reuss A 1929 Z. Angew. Math. Mech. 9 49

    Article  CAS  Google Scholar 

  32. Ganeshan S, Shang S L, Zhang H, Wang Y, Mantina M and Liu Z K 2009 Intermetallics 17 313

    Article  CAS  Google Scholar 

  33. McNaught A D 1997 Compendium of chemical terminology (Oxford: Blackwell Science)

    Google Scholar 

  34. Pugh S F 1954 Dublin Philos. Mag. J. Sci. 45 823

    Article  CAS  Google Scholar 

  35. Hu W C, Liu Y, Li D J, Zeng X Q and Xu C S 2014 Comput. Mater. Sci. 83 27

    Article  CAS  Google Scholar 

  36. Tian Y, Xu B and Zhao Z 2012 Int. J. Refract. Met. Hard Mater. 33 93

    Article  CAS  Google Scholar 

  37. Shin C S, Gall D, Hellgren N, Patscheider J, Petrov I and Greene J E 2003 J. Appl. Phys. 93 6025

    Article  CAS  Google Scholar 

  38. Holleck H 1986 J. Vac. Sci. Technol. A Vacuum Surfaces Film 4 2661

    Article  CAS  Google Scholar 

  39. Holec D, Friák M, Neugebauer J and Mayrhofer P H 2012 Phys. Rev. B 85 64101

    Article  Google Scholar 

  40. Liu Z T Y, Burton B P, Khare S V and Gall D 2016 J. Phys. Condens. Matter 29 35401

    Article  Google Scholar 

  41. Zhong Y, Xia X, Shi F, Zhan J, Tu J and Fan H J 2016 Adv. Sci. 3 1500286

    Article  Google Scholar 

  42. Pettifor D G 1992 Mater. Sci. Technol. 8 345

    Article  CAS  Google Scholar 

  43. Frantsevich I N, Voronov F F and Bokuta S A 1983 Elastic constants and elastic moduli of metals and insulators handbook p 60

  44. Fu H, Li D, Peng F, Gao T and Cheng X 2008 Comput. Mater. Sci. 44 774

    Article  CAS  Google Scholar 

  45. Ledbetter H and Migliori A 2006 J. Appl. Phys. 100 63516

    Article  Google Scholar 

  46. Meziane S, Feraoun H, Ouahrani T and Esling C 2013 J. Alloys Compd. 581 731

    Article  CAS  Google Scholar 

  47. Li X, Chen D, Wu Y, Wang M, Ma N and Wang H 2017 AIP Adv. 7 065012

    Article  Google Scholar 

  48. Yu G, Lee C H, Heeger A J and Cheong S W 1992 Physica C Superconductivity 203 419

    Article  CAS  Google Scholar 

  49. De Almeida J S and Ahuja R 2006 Phys. Rev. B 73 165102

    Article  Google Scholar 

  50. Li X, Cui H and Zhang R 2016 Sci. Rep. 6 1

    Article  Google Scholar 

  51. Wang Q B, Zhou C, Chen L, Wang X C and He K H 2014 Opt. Commun. 312 185

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhila Oliver Mnisi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mnisi, B.O. Density functional theory study of electronic and optical properties of ScN nitride in NaCl-B1, CsCl-B2, ZB-B3 and NiAs-B8 phases. Bull Mater Sci 45, 16 (2022). https://doi.org/10.1007/s12034-021-02601-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-021-02601-4

Keywords

Navigation