Skip to main content

Advertisement

Log in

Biohybrid photoelectrodes for solar photovoltaic applications

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

The biohybrid photoelectrodes have been studied for photovoltaic applications. The hybrid solar cells were prepared using natural dyes and sputtered zinc oxide (ZnO) thin films on fluorine-doped tin oxide substrate. The natural dyes were extracted from basil (tulsi) leaves, spinach, thor (chhitar thor opuntia or prickly pear), pomegranate and sunflower. The dye-modified photoelectrodes expands the light absorbance of the solar spectrum. They have shown an enhancement in photocurrent and photovoltage under illumination relative to the unmodified photoelectrodes. The photovoltage and photocurrent of hybrid cells were measured to test the devices under light in active area of 1 × 1 cm2. The hybrid solar cells have achieved solar energy conversion efficiency from 0.01 to 0.1%. Hybrid solar cells may lead to inexpensive and environment friendly solar energy conversion applications, such as solar electricity and solar fuels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. O’Regan B and Grätzel M 1991 Nature 353 737

    Article  Google Scholar 

  2. Gunes S and Sacriciftci N S 2008 Inorg. Chim. Acta 361 581

    Article  Google Scholar 

  3. Fernandez-Garcia M, Martinez-Arias A, Hanson J C and Rodriguez J A 2004 Chem. Rev. 104 4063

    Article  CAS  Google Scholar 

  4. Rajesh Kumar, Ahmad Umar, Girish Kumar, Hari Singh Nalwa, Anil Kumar and Akhtar M S 2017 J. Mater. Sci. 52 4743

  5. Khadare S S and Pathan H M 2014 J. Renew. Sustain. Energy 6 053131

  6. Greg P Smestad and Michael Grätzel 1998 J. Chem. Educ. 75 752

  7. Vinutha K V, Tejas M K, Kumar J, Kumar S and Mahesh H M 2016 Impe. J. Interdisciplin. Res. 2 1011

    Google Scholar 

  8. Narayan M R 2012 Renew. Sustain. Energy Rev. 16 208

    CAS  Google Scholar 

  9. Chang H and Lo Y J 2010 Solar Energy 84 1833

    Article  CAS  Google Scholar 

  10. Dieter Wohrle and Dieter Meissner 1991 Adv. Mater 3 129

  11. Kashyouta A B, Solimanb M, El Gamalb M and Fathya M 2005 Mater. Chem. Phys. 90 230

    Article  Google Scholar 

  12. Awad N K, Ashour E A and Allam N K 2014 J. Renew. Sustain. Energy 6 022702

  13. Sim Y H, Yun M J, Cha S I, Seo S H and Lee D Y 2018 ACS Omega 3 698

  14. Hernández-Martínez A R, Estevez M, Vargas S, Quintanilla F and Rodríguez R 2012 J. Appl. Res. Technol. 10 38

    Article  Google Scholar 

  15. Kim Y, Shin S A, Lee J, Yang K D and Nam K T 2014 Nanotechnology 25 342001

  16. Snaith H J, Moule A J, Klein C, Meerholz K, Friend R H and Gratzel M 2007 Nano Lett. 7 3372

    Article  CAS  Google Scholar 

  17. Lee T D and Ebong A U 2017 Renew. Sustain. Energy Rev. 70 1286

    Article  CAS  Google Scholar 

  18. Shiyani T and Bagchi T 2020 9 1

  19. Maurya I C, Singh S, Srivastava P, Maiti B and Bahadur P 2019 Opt. Matr. 90 273

    Article  Google Scholar 

  20. Ciesielski P N, Faulkner C J, Irwin M T, Gregory J M, Tolk N H, Cliffel D E et al 2010 Adv. Funct. Mater. 20 4048

    Article  CAS  Google Scholar 

  21. Leblanc G, Chen G, Gizzie E A, Jennings G K and Cliffel D E 2012 Adv. Mater. 24 5959

    Article  CAS  Google Scholar 

  22. Mershin A, Matsumoto K, Kaiser L, Yu D, Vaughn M, Nazeeruddin M K et al 2012 Sci. Rep. 2 234

    Article  Google Scholar 

  23. Sawhney N and Satapathi R A 2017 IEEE J. Photovoltaics 7 539

    Article  Google Scholar 

  24. Kashyouta A B, Solimanb M, Gamalb M E and Fathya M 2005 Matr. Chem. Phys. 90 230

    Article  Google Scholar 

  25. Kumar R, Umar A, Kumar G, Nalwa H S, Kumar A and Akhtar M S 2017 J. Mater. Sci. 52 4743

    Article  CAS  Google Scholar 

  26. Velanganni S, Pravinraj S, Immanuel P and Thiruneelakandan R 2018 Physica B Condensed Matter. 534 56

    Article  CAS  Google Scholar 

  27. Bouaoud A, Rmili A, Ouachtari F, Louardi A, Chtouki T et al 2013 Matr. Chem. Phys. 137 843e847

  28. Syafinar R, Gomesh N, Irwanto M, Fareq M and Irwan Y M 2015 Energy Procedia 79 896

    Article  CAS  Google Scholar 

  29. Shiyani T, Agrawal S and Banerjee I 2020 Nanomater. Energy 9 1

    Article  Google Scholar 

  30. Robinson M 2018 ACS Appl. Energy Mater. 1 301

    Article  CAS  Google Scholar 

  31. Gunther D, LeBlanc G, Prasai D, Zhang J R, Cliffel D E, Bolotin K I et al 2013 Langmuir 29 4177

    Article  CAS  Google Scholar 

  32. Shiyani T, Mahapatra S K and Banerjee I 2020 Matr. Today Proc. 32 412

    Article  CAS  Google Scholar 

  33. Sinha D, De D and Ayaz A 2018 Spectrochim. Acta A 193 467

    Article  CAS  Google Scholar 

  34. Shiyani T, Mahapatra S K and Banerjee I 2020 IETE J. Res. https://doi.org/10.1080/03772063.2020.1768161

    Article  Google Scholar 

Download references

Acknowledgement

We are thankful to the Central University of Gujarat, India, for giving Non-NET UGC fellowship to TS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T Shiyani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shiyani, T., Agrawal, S., Markna, J.H. et al. Biohybrid photoelectrodes for solar photovoltaic applications. Bull Mater Sci 45, 9 (2022). https://doi.org/10.1007/s12034-021-02598-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-021-02598-w

Keywords

Navigation