Skip to main content
Log in

Density functional theory investigations on the interaction of uracil with borospherene

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

The adsorption of uracil molecule on the B40 fullerene is scrutinized using density functional theory and non-equilibrium Green’s function regime. In this context, adsorption and total energies, charge transfer, binding distance, electron densities, density of states, molecular energy spectra, transmission spectra, highest occupied molecular orbital (HOMO)–lowest unoccupied molecular orbital (LUMO) gap, IV curve and differential conductance are determined. It is deduced that uracil molecule is physisorbed on the surface of borospherene with binding distance of 2.38 Å and no orbital overlapping exists between the two molecules. LUMO is dominant in transmission in both pristine B40 and uracil + B40 molecular junctions. The extent of coupling between the central molecule and metallic leads is more in case of pristine B40 molecular junction in comparison to the uracil + B40 device. From the molecular energy spectra, it is inferred that the HOMO–LUMO gap increases when uracil is adsorbed on the surface of B40. The values of current and differential conductance are different for the pristine B40 and uracil + B40 devices. This implies that borospherene can be effectively utilized as bio-marker for detecting the presence of uracil molecule and thus is an efficient sensor to predict the occurrence of mutations and cancerous tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Krokan H E, Drablùs F and Slupphaug G 2002 Oncogene 21 8935

    CAS  Google Scholar 

  2. Visnes T, Doseth B, Pettersen H S, Hagen L, Sousa M M L, Akbari M et al 2009 Phil. Trans. R. Soc. B 364 563

    CAS  Google Scholar 

  3. Horvath A and Vertessy B G 2010 Nucl. Acids Res. 38 196

    Google Scholar 

  4. Rao K S 2007 Nat. Clin. Pract. Neurol. 3 162

    CAS  Google Scholar 

  5. Krokan H E and Bjøra M 2013 Cold Spring Harb. Perspect. Biol. 5 012583

  6. Wallace S S, Murphy D L and Sweasy J B 2012 Cancer Lett. 327 73

    CAS  Google Scholar 

  7. https://www.genome.jp/dbget-bin/www_bget?ds:H00403

  8. Cui J, Gizzi A and Stivers J T 2019 Nucl. Acids Res. 47 4153

    CAS  Google Scholar 

  9. Pettersen H S, Galashevskaya A, Doseth B, Sousa M M, Sarno A, Visnes T et al 2015 DNA Repair (Amst) 25 60

    CAS  Google Scholar 

  10. Maul R W and Gearhart P J 2010 Adv. Immunol. 105 159

    CAS  Google Scholar 

  11. Liu M and Schatz D G 2009 Trends Immunol. 30 173

    Google Scholar 

  12. Yan N, O’Day E, Wheeler L A, Engelman A and Lieberman J 2011 Proc. Natl. Acad. Sci. USA 108 9244

    CAS  Google Scholar 

  13. Horvath A, Bekesi A, Muha V, Erdelyi M and Vertessy B G 2013 Fly (Austin) 7 23

    CAS  Google Scholar 

  14. Muha V, Horvath A, Bekesi A, Pukancsik M, Hodoscsek B, Merenyi G et al 2012 PLoS Genet. 8 e1002738

  15. Zhai H J, Zhao Y F, Li W L, Chen Q, Bai H, Hu H S et al 2014 Nat. Chem. 6 727

    CAS  Google Scholar 

  16. Yang Z, Ji Y L, Lan G, Xu L C, Liu X and Xu B 2015 Solid State Commun. 217 38

    CAS  Google Scholar 

  17. Dong H, Hou T, Lee S T and Li Y 2015 Sci. Rep. 5 9952

    CAS  Google Scholar 

  18. Dong H, Lin B, Gilmore K, Hou T, Lee S T and Li Y 2015 Curr. Appl. Phys. 15 1084

    Google Scholar 

  19. Gao G, Ma F, Jiao Y, Sun Q, Jiao Y, Waclawik E et al 2015 Comput. Mater. Sci. 108 38

    CAS  Google Scholar 

  20. Moradi M, Vahabi V and Bodaghi A 2016 J. Mol. Liquids 223 315

    CAS  Google Scholar 

  21. Tang C and Zhang X 2016 Int. J. Hydrogen Energy 41 16992

    CAS  Google Scholar 

  22. Maniei Z, Shakerzadeh E and Mahdavifar Z 2018 Chem. Phys. Lett. 691 360

    CAS  Google Scholar 

  23. Lin B, Dong H, Du C, Hou T, Lin H and Li Y 2016 Nanotechnology 27 075501

  24. Kaur J, Kumar R, Vohra R and Sawhney R S 2020 J. Mol. Model 26 17

    CAS  Google Scholar 

  25. Fa W, Chen S, Pande S and Zeng X C 2015 J. Phys. Chem. A 119 11208

    CAS  Google Scholar 

  26. Shakerzadeh E, Biglari Z and Tahmasebi E 2016 Chem. Phys. Lett. 654 76

    CAS  Google Scholar 

  27. Li Z, Yu G, Zhang X, Huang X and Chen W 2017 Phys. E: Low-Dimens. Syst. Nanostruct. 94 204

    CAS  Google Scholar 

  28. Wang W, Guo Y D and Yan X H 2016 RSC Adv. https://doi.org/10.1039/C6RA00179C

    Article  Google Scholar 

  29. Wang J, Yu T, Gao Y and Wang Z 2017 Sci. China Mater. 60 1264

    CAS  Google Scholar 

  30. Shah E V and Roy D R 2016 Physica E 84 354

    CAS  Google Scholar 

  31. Kaur R and Kaur J 2017 J. Mol. Model. 23 351

    Google Scholar 

  32. Kaur J and Kaur R 2017 8th ICCCNT 1-4. https://doi.org/10.1109/ICCCNT.2017.8203969

  33. Atomistic Toolkit Manual, Quantumwise Inc. Atomistix toolkit version 13.8.0, Quantumwise A/S (http://quantumwise.com)

  34. Xue Y, Datta S and Ratner M A 2002 Chem. Phys. 281 151

    CAS  Google Scholar 

  35. Brandbyge M, Mozos J L, Ordejon P, Taylor J and Stokbro K 2002 Phys. Rev. B 65 165401

  36. Taylor J, Guo H and Wang J 2001 Phys. Rev. B 63 245407

  37. Carlo A D 2002 Physica B 314 211

    Google Scholar 

  38. Pecchia A and Carlo A D 2004 Rep. Prog. Phys. 67 1497

    CAS  Google Scholar 

  39. Magoga M and Joachim C 1997 Phys. Rev. B 56 4722

    CAS  Google Scholar 

  40. Corbel S, Cerda J and Sautet P 1999 Phys. Rev. B 60 1989

    CAS  Google Scholar 

  41. Cerdá J and Soria F 2000 Phys. Rev. B 61 7965

    Google Scholar 

  42. Emberly E G and Kirczenow G 2001 Phys. Rev. B 62 10451

    Google Scholar 

  43. Zahid F, Paulsson M, Polizzi E, Ghosh A W, Siddiqui L and Datta S 2005 J. Chem. Phys. 123 064707

  44. Kienle D, Cerda J I and Ghosh A W 2006 J. Appl. Phys. 100 043714

  45. Kienle D, Bevan K H, Liang G-C, Siddiqui L, Cerda J I and Ghosh A W 2006 J. Appl. Phys. 100 043715

  46. Fronzi M, Ssoon A, Delley B, Traversa E and Stampfly C 2009 J. Chem. Phys. 131 104701

  47. Fronzi M, Ssoon A, Delley B, Traversa E and Stampfly C 2009 Phys. Chem. Phys. 11 9188

    CAS  Google Scholar 

  48. Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    CAS  Google Scholar 

  49. https://en.wikipedia.org/wiki/Uracil

  50. Cheng S, Sun X, Zhao L and Chen J 2019 Eur. Phys. J. D 73 Article ID 88

    Google Scholar 

  51. Walia G K and Randhawa D K 2018 J. Mol. Model. 24 94

    Google Scholar 

  52. Deng F, Luo X-B, Ding L and Luo S-L 2019 Nanomaterials for the removal of pollutants and resource utilization 149

  53. Kaur M, Sawhney R S and Engles D 2016 J. Mater. Res. 31 2025

    CAS  Google Scholar 

  54. Kaur M, Sawhney R S and Engles D 2016 Mol. Phys. 114 3255

    CAS  Google Scholar 

  55. Kaur M, Sawhney R S and Engles D 2017 J. Mol. Graph. Mod. 71 184

    CAS  Google Scholar 

  56. Walia G K and Randhawa D K 2018 Struct. Chem. 29 257

    CAS  Google Scholar 

  57. https://docs.quantumatk.com/manual/Types/DeviceDensityOfStates/DeviceDensityOfStates.html

  58. Heurich J, Cuevas J C, Wenzel W and Schon G 2002 Phys. Rev. Lett. 88 256803

  59. Landauer R 1989 J. Phys.: Condens. Matter 1 8099

    Google Scholar 

  60. https://docs.quantumatk.com/manual/Types/TransmissionSpectrum/TransmissionSpectrum.html

Download references

Acknowledgement

We acknowledge the Virtual Nano Lab at Guru Nanak Dev University, Amritsar, for providing the necessary computational facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jupinder Kaur.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, J., Kumar, R., Vohra, R. et al. Density functional theory investigations on the interaction of uracil with borospherene. Bull Mater Sci 45, 22 (2022). https://doi.org/10.1007/s12034-021-02595-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-021-02595-z

Keywords

Navigation