Skip to main content
Log in

Anomalous electrical transport in orientationally controlled trinary hybrids of graphene and twisted bilayer molybdenum disulphide

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Moiré superlattices of two-dimensional (2D) materials oriented at low twist angles generate a large-scale interference pattern leading to strong interlayer coupling, which influences the band structure and introduces flatbands. Conventional electronic transport measurements have shown the effects of flatband physics, manifesting as correlated insulating states and emergent superconductivity. In this study, we probe the electronic states in a trinary hybrid of graphene and twisted bilayer (tbl) MoS2. Graphene acts as a sensing layer, which captures the electronic effects of the underlying substrate, and we observe certain anomalies in the electronic characteristics of graphene only in the presence of an underlying 58.5\(^\circ\) tbl MoS2, at low temperatures. Interestingly, graphene on tbl MoS2, with twist angle near 0\(^\circ\) or on natural bilayer MoS2, does not show any anomalies. Density functional theory calculations show several distinguishable peaks in the density of states at the conduction band edge of twisted MoS2 near 60\(^\circ\). We speculate that the anomaly appears due to fermi level pinning of graphene owing to a large density of states in the flatbands of twisted bilayer MoS2. An analysis of the energetics in the graphene-MoS2 hybrid quantitatively agree with theoretical predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Yu H, Liu G B, Tang J, Xu X and Yao W 2017 Sci. Adv. 3 e1701696

    Article  Google Scholar 

  2. Bistritzer R and MacDonald A H 2011 Proc. Natl. Acad. Sci. 108 12233

    Article  CAS  Google Scholar 

  3. Naik M H and Jain M 2018 Phys. Rev. Lett. 121 266401

    Article  CAS  Google Scholar 

  4. Kundu S, Naik M H, Krishnamurthy H R and Jain M 2021 arXiv:2103.07447

  5. Chen G, Jiang L, Wu S, Lyu B, Li H, Chittari B L et al 2018 Nat. Phys. 15 237

    Article  Google Scholar 

  6. Jin C, Regan E C, Yan A, Utama M I B, Wang D, Zhao S et al 2019 Nature 567 76

    Article  CAS  Google Scholar 

  7. Tran K, Moody G, Wu F, Lu X, Choi J, Kim K et al 2019 Nature 567 71

    Article  CAS  Google Scholar 

  8. Cao Y, Luo J Y, Fatemi V, Fang S, Sanchez-Yamagishi J D, Watanabe K et al 2016 Phys. Rev. Lett. 117 116804

    Article  CAS  Google Scholar 

  9. Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E et al 2018 Nature 556 43

    Article  CAS  Google Scholar 

  10. Pan H, Wu F and Sarma S D 2020 Phys. Rev. Res. 2 033087

    Article  CAS  Google Scholar 

  11. Zhang Z, Wang Y, Watanabe K, Taniguchi T, Ueno K, Tutuc E and LeRoy B J 2019 arXiv:1910.13068

  12. Wang L, Shih E M, Ghiotto A, Xian L, Rhodes D A et al 2020 Nat. mater. 19 861

    Article  CAS  Google Scholar 

  13. Xu Y, Liu S, Rhodes D A, Watanabe K, Taniguchi T, Hone J et al 2020 Nature 587 214

    Article  CAS  Google Scholar 

  14. Naik M H, Kundu S, Maity I and Jain M 2020 Phys. Rev. B 102 075413

    Article  CAS  Google Scholar 

  15. Roy K, Padmanabhan M, Goswami S, Sai T P, Ramalingam G, Raghavan S et al 2013 Nat. Nanotech. 8 826

    Article  CAS  Google Scholar 

  16. Mitra S, Kakkar S, Ahmed T and Ghosh A 2020 Phys. Rev. Appl. 14 064029

    Article  CAS  Google Scholar 

  17. Ahmed T, Roy K, Kakkar S, Pradhan A and Ghosh A 2020 2D Mater. 7 025043

  18. Kashid R, Mishra J K, Pradhan A, Ahmed T, Kakkar S, Mundada P et al 2020 APL Mater. 8 091114

    Article  CAS  Google Scholar 

  19. Larentis S, Tolsma J R, Fallahazad B, Dillen D C, Kim K, MacDonald A H et al 2014 Nano Lett. 14 2039

    Article  CAS  Google Scholar 

  20. Guo Y, Liu C, Yin Q, Wei C, Lin S, Hoffman T B et al 2016 ACS Nano 10 8980

    Article  CAS  Google Scholar 

  21. Debnath R, Sett S, Biswas R, Raghunathan V and Ghosh A 2021 Nanotech. 32 455705

    Article  CAS  Google Scholar 

  22. Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S et al 2010 Nat. Nanotech. 5 722

    Article  CAS  Google Scholar 

  23. Bolotin K I, Sikes K J, Hone J, Stormer H L and Kim P 2008 Phys. Rev. Lett. 101 096802

    Article  CAS  Google Scholar 

  24. Pal A N, Kochat V and Ghosh A 2012 Phys. Rev. Lett. 109 196601

    Article  Google Scholar 

  25. Sols F, Guinea F and Neto A C 2007 Phys. Rev. Lett. 99 166803

    Article  CAS  Google Scholar 

  26. Yan R, Zhang Q, Li W, Calizo I, Shen T, Richter C A et al 2012 Appl. Phys. Lett. 101 022105

    Article  Google Scholar 

  27. Howell S L, Jariwala D, Wu C C, Chen K S, Sangwan V K, Kang J et al 2015 Nano Lett. 15 2278

    Article  CAS  Google Scholar 

  28. Kunstmann J, Wendumu T B and Seifert G 2017 Phys. Status Solidi (b) 254 1600645

    Article  Google Scholar 

  29. Mongillo M, Chiappe D, Arutchelvan G, Asselberghs I, Perucchini M, Manfrini M et al 2016 Appl. Phys. Lett. 109 233102

    Article  Google Scholar 

Download references

Acknowledgement

We acknowledge financial support from the U.S. Army International Technology Centre Pacific (ITC-PAC) and Ministry of Electronics and Information Technology, Government of India, as well as the Supercomputer Education and Research Centre (SERC) at IISc, for providing computational resources. SS acknowledges Aditya Jayaraman for fruitful discussions during the development of the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaili Sett.

Additional information

This article is part of the special issue on ‘Quantum materials and devices’.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 556 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sett, S., Kundu, S., Kakkar, S. et al. Anomalous electrical transport in orientationally controlled trinary hybrids of graphene and twisted bilayer molybdenum disulphide. Bull Mater Sci 44, 280 (2021). https://doi.org/10.1007/s12034-021-02590-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-021-02590-4

Keywords

Navigation