Skip to main content
Log in

Synthesis, characterization and investigation of thermal, mechanical and antibacterial properties of boric acid-incorporated polyurethane foams

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

In this study, a novel boric acid-incorporated polyurethane (BPU) foam was synthesized and its several physical and biological properties were investigated. In order to determine the effect of the incorporated boric acid (BA) particles into the foam, mechanical and physical properties (apparent density, contact angle), analytical (Fourier transform infrared spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, inductively coupled plasma optical emission spectrometry), morphological (scanning electron microscopy (SEM), micro-computed tomography), thermal characteristics (thermogravimetric analysis, differential scanning calorimetry) and antibacterial activity were examined. The addition of BA particles to the PU foam improved the thermal and mechanical properties, as BA strengthened the polymeric structure through hydrogen bonds with PU. Mechanical analyses and contact angle measurements revealed that the BPU foam demonstrated better mechanical properties (94.0 kPa) and higher hydrophobicity values (108.52°) with respect to PU foam (52.9 kPa and 37.35°, respectively). According to microscopy analyses, micro-CT images confirmed SEM images in which PU foam has an open cell structure, whereas BPU foam has a closed cell structure. The antibacterial activity test results demonstrate that incorporation of BA to the PU structure significantly improved the antibacterial properties of the PU foam against both of Gram-positive and Gram-negative bacteria. This study suggests that the addition of BA into PU structure enhanced the antibacterial activities of PU foam while improving its physical, mechanical and thermal properties. As a result, BA incorporation should be classified as a promising alternative to improve the properties of PU foams.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Wang W and Wang C 2012 The design and manufacture of medical devices (Amsterdam: Elsevier) p 115

    Book  Google Scholar 

  2. Khodabakhshi D, Eskandarinia A, Kefayat A, Rafienia M, Navid S, Karbasi S et al 2019 Colloids Surf. B Biointerfaces 178 177

    Article  CAS  Google Scholar 

  3. Cooper S L and Guan J 2016 Advances in polyurethane biomaterials (Amsterdam: Elsevier Inc)

    Google Scholar 

  4. Yoo H J and Kim H D 2008 J. Biomed. Mater. Res.—Part B Appl. Biomater. 85 326

    Article  Google Scholar 

  5. Nukavarapu S P, Bezwada R S, Dorcemus D L, Srivasthava N and Armentano R J 2014 MRS Proc. 1621 93

    Article  Google Scholar 

  6. Hussain H K, Liu G W and Yong Y W 2014 Constr. Build. Mater. 50 200

    Article  Google Scholar 

  7. Divakaran A V, Azad L B, Surwase S S, Torris A T A and Badiger M V 2016 Chem. Mater. 28 2120

    Article  CAS  Google Scholar 

  8. Das B, Mandal M, Upadhyay A, Chattopadhyay P and Karak N 2013 Biomed. Mater. 8 035003

    Article  CAS  Google Scholar 

  9. Liu X, Niu Y, Chen K C and Chen S 2017 Mater. Sci. Eng. C 71 289

    Article  CAS  Google Scholar 

  10. Lundin J G, McGann C L, Daniels G C, Streifel B C and Wynne J H 2017 Mater. Sci. Eng. C 79 702

    Article  CAS  Google Scholar 

  11. Eskandarinia A, Kefayat A, Gharakhloo M, Agheb M, Khodabakhshi D, Khorshidi M et al 2020 Int. J. Biol. Macromol. 149 467

    Article  CAS  Google Scholar 

  12. Członka S, Strąkowska A, Strzelec K, Kairytė A and Kremensas A 2020 Materials (Basel) 13 1108

    Article  Google Scholar 

  13. Ashjari H R, Dorraji M S S, Fakhrzadeh V, Eslami H, Rasoulifard M H, Rastgouy-Houjaghan M et al 2018 Int. J. Biol. Macromol. 111 1076

    Article  CAS  Google Scholar 

  14. Pyun D G, Yoon H S, Chung H Y, Choi H J, Thambi T, Kim B S et al 2015 J. Mater. Chem. B 3 7752

    Article  CAS  Google Scholar 

  15. Ulu A, Balcioglu S, Birhanli E, Sarimeseli A, Keskin R, Koytepe S et al 2018 J. Appl. Polym. Sci. 135 46575

    Article  Google Scholar 

  16. Tepedelen B E, Soya E and Korkmaz M 2016 Biol. Trace Elem. Res. 174 309

    Article  CAS  Google Scholar 

  17. Geyikoglu F, Koc K, Colak S, Erol H S, Cerig S, Yardimci B K et al 2019 Biol. Trace Elem. Res. 192 214

    Article  CAS  Google Scholar 

  18. De Seta F, Schmidt M, Vu B, Essmann M and Larsen B 2009 J. Antimicrob. Chemother. 63 325

    Article  Google Scholar 

  19. Kaplan M, Özgür E, Ersoy O, Kehribar L, İdil N and Uzun L 2021 J. Biomater. Sci. Polym. Ed. 32 1

    Article  Google Scholar 

  20. Pazarçeviren A E, Tezcaner A, Keskin D, Kolukısa S T, Sürdem S and Evis Z 2021 Biol. Trace Elem. Res. 199 968

    Article  Google Scholar 

  21. Nzietchueng R M, Dousset B, Franck P, Benderdour M, Nabet P and Hess K 2002 J. Trace Elem. Med. Biol. 16 239

    Article  CAS  Google Scholar 

  22. Benderdour M, Hess K, Dzondo-Gadet M, Nabet P, Belleville F and Dousset B 1998 Biochem. Biophys. Res. Commun. 246 746

    Article  CAS  Google Scholar 

  23. Ahmadi Y, Siddiqui M T, Haq Q M R and Ahmad S 2020 Arab. J. Chem. 13 2689

    Article  CAS  Google Scholar 

  24. Roy N, Saha N, Kitano T and Saha P 2010 Soft Mater. 8 130

    Article  CAS  Google Scholar 

  25. Huang C, Hu C, Sun G, Ji B and Yan K 2020 Cellulose 27 2859

    Article  CAS  Google Scholar 

  26. Lubczak R, Szczęch D, Broda D, Szymańska A, Wojnarowska-Nowak R, Kus-Liśkiewicz M et al 2018 Polym. Test. 70 403

    Article  CAS  Google Scholar 

  27. Członka S, Strakowska A, Strzelec K, Adamus-Włodarczyk A, Kairyte A and Vaitkus S 2019 Polymers (Basel) 11 336

    Article  Google Scholar 

  28. Gama N V, Silva R, Mohseni F, Davarpanah A, Amaral V S, Ferreira A et al 2018 Polym. Test. 69 199

    Article  CAS  Google Scholar 

  29. Amberger M A and Broekaert J A C 2010 J. Anal. At. Spectrom. 25 1308

    Article  CAS  Google Scholar 

  30. Zhang X D, Macosko C W, Davis H T, Nikolov A D and Wasan D T 1999 J. Colloid Interface Sci. 279 270

    Article  Google Scholar 

  31. Vallalpando I, John P and Wilson J I B 2017 Rev. Mex. Física ISSN-e 0035-001X 63 155

  32. Quesada-González M, Boscher N D, Carmalt C J and Parkin I P 2016 ACS Appl. Mater. Interfaces 8 25024

    Article  Google Scholar 

  33. Mishra A K, Chattopadhyay D K, Sreedhar B and Raju K V S N 2006 Prog. Org. Coat. 55 231

    Article  CAS  Google Scholar 

  34. Ranote S, Kumar D, Nadda S, Kumar R, Chauhan G S and Joshi V 2018 Chem. Eng. J. 361 1586

    Article  Google Scholar 

  35. Zhang S, Xiang A, Tian H and Rajulu A V 2016 J. Polym. Environ. 26 15

    Article  Google Scholar 

  36. Jin Y, Wan Q and Ding Y 2015 Procedia engineering, vol 102 (Amsterdam: Elsevier Ltd.) p 1877

    Google Scholar 

  37. Wu L, Gemert J Van and Camargo R 2008 Rheology Study in Polyurethane Rigid Foams (Auburn Hills, USA: Huntsman Corporation)

  38. Zhou Q-H, Li M, Yang P and Gu Y 2013 Macromol. Theory Simul. 22 107

    Article  CAS  Google Scholar 

  39. Sienkiewicz N, Członka S, Kairyte A and Vaitkus S 2019 Polym. Test. 79 106046

    Article  CAS  Google Scholar 

  40. Hatakeyama H, Kosugi R and Hatakeyama T 2008 J. Therm. Anal. Calorim. 92 419

    Article  CAS  Google Scholar 

  41. Saylan Y, Bereli N, Uzun L and Denizli A 2014 Sep. Sci. Technol. 49 1555

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Mr Ali Motamani for the mechanical testing and Cennet Yıldırım for XPS analysis of the samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sedat Sürdem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sürdem, S., Yörükoğlu, A., Öztürk, S. et al. Synthesis, characterization and investigation of thermal, mechanical and antibacterial properties of boric acid-incorporated polyurethane foams. Bull Mater Sci 45, 5 (2022). https://doi.org/10.1007/s12034-021-02577-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-021-02577-1

Keywords

Navigation