Skip to main content

Advertisement

Log in

Effect of electrolyte concentration on the electrochemical performance of RGO–KOH supercapacitor

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

The electrolyte used, plays a crucial role in the electrochemical performance of supercapacitors. It is known that the concentration of electrolyte is also a controlling parameter for a given active material where the performance will be optimum for a particular concentration. Herein, we report a study on the effect of electrolyte concentration on the electrochemical performance of reduced graphite oxide–potassium hydroxide supercapacitor. The supercapacitor achieves a maximum specific capacitance of 232 F g−1 in 6 M KOH with energy and power density values of ~21 Wh kg−1 and ~400 W kg−1, respectively. The kinetics of charge storage reveals that the combination of surface phenomenon and intercalation process leads to maximum specific capacitance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Akella A K, Saini R P and Sharma M P 2009 Energy 34 390

    Google Scholar 

  2. Simon P and Gogotsi Y 2008 Nat. Mater. 7 845

    Article  CAS  Google Scholar 

  3. Deng Y, Xie Y, Zou K and Ji X 2016 J. Mater. Chem. A 4 1144

    Article  CAS  Google Scholar 

  4. Abioye A M and Ani F N 2015 Renew. Sustain. Energy Rev. 52 1282

    Article  CAS  Google Scholar 

  5. Muzaffar A, Ahamed M B, Deshmukh K and Thirumalai J 2019 Renew. Sustain. Energy Rev. 101 123

    Article  CAS  Google Scholar 

  6. Balakrishnan Avinash and Subramanian K R V 2014 Nanostructured ceramic oxides for supercapacitor applications. (New York: Taylor & Francis Group)

    Book  Google Scholar 

  7. Zhong C, Deng Y, Hu W, Qiao J, Zhang L and Zhang J 2015 Chem. Soc. Rev. 44 7484

    Article  CAS  Google Scholar 

  8. Han Y, Lai Z, Wang Z, Yu M, Tong T and Lu X 2018 Chem.: Eur. J. 24 7312

    Article  CAS  Google Scholar 

  9. Zhang X, Wang X, Jiang L, Wu H, Wu C and Su J 2012 J. Power Sources 216 290

    Article  CAS  Google Scholar 

  10. El-Kady M F, Shao Y and Kaner R B 2016 Nat. Rev. Mater. 1 1

    Article  Google Scholar 

  11. Wang Y, Song Y and Yongyao X 2016 Chem. Soc. Rev. 45 5925

    Article  CAS  Google Scholar 

  12. Ke Q and Wang J 2016 J. Materiomics 2 37

    Article  Google Scholar 

  13. Oh Y J, Yoo J J, Kim Y I, Yoon J K, Yoon H N, Kim J H et al 2014 Electrochim. Acta 116 118

    Article  CAS  Google Scholar 

  14. Vivekchand S R C, Rout C S, Subrahmanyam K S, Govindaraj A and Rao C N R 2008 J. Chem. Sci. 120 9

    Article  CAS  Google Scholar 

  15. Stoller M D, Park S, Zhu Y, An J and Ruoff R S 2008 Nano Lett. 8 3498

    Article  CAS  Google Scholar 

  16. Wang Y, Shi Z Q, Huang Y, Ma Y F, Wang C Y, Chen M M et al 2009 J. Phys. Chem. C 113 13103

    Article  CAS  Google Scholar 

  17. Demarconnay L, Raymundo-Piñero E and Béguin F 2010 Electrochem. Commun. 12 1275

    Article  CAS  Google Scholar 

  18. Du Q, Zheng M, Zhang L, Wang Y, Chen J, Xue L et al 2010 Electrochim. Acta 55 3903

    Google Scholar 

  19. Gao W, Singh N, Song L, Liu Z, Reddy A M, Ci L et al 2011 Nat. Nanotechnol. 6 496

    Article  CAS  Google Scholar 

  20. Lin C, Ritter J A and Popov B N 1999 J. Elctrochem. Soc. 146 3639

    Article  CAS  Google Scholar 

  21. Zhang L and Shi G 2011 J. Phys. Chem. C 115 7206

    Article  Google Scholar 

  22. Chen Y, Zhang X, Zhang D, Yu P and Ma Y 2011 Carbon 49 573

    Article  CAS  Google Scholar 

  23. Bai Y, Rakhi R B, Chen W and Alshareef H N 2013 J. Power Sources 233 313

    Article  CAS  Google Scholar 

  24. Yang D and Bock C 2017 J. Power Sources 337 73

    Article  CAS  Google Scholar 

  25. Kumar R, Joanni E, Singh R K, da Silva E T, Savu R, Kubota L T et al 2017 J. Colloid Interface Sci. 507 271

    Article  CAS  Google Scholar 

  26. Kim M, Hwang Y, Min K and Kim J 2013 Phys. Chem. Chem. Phys. 15 15602

    Article  CAS  Google Scholar 

  27. Park S, An J, Potts J R, Velamakanni A, Murali S and Ruoff R S 2011 Carbon 49 3019

    Article  CAS  Google Scholar 

  28. Chen J, Yao B, Li C and Shi G 2013 Carbon 64 225

    Article  CAS  Google Scholar 

  29. Franklin R E 1951 R. Soc. Lond. 209 196

    CAS  Google Scholar 

  30. Jeong H K, Lee Y P, Jin M H, Kim E S, Bae J J and Lee Y H 2009 Chem. Phys. Lett. 470 255

    Article  CAS  Google Scholar 

  31. Ren P G, Yan D X, Ji X, Chen T and Li Z M 2010 Nanotechnology 22 055705

    Article  Google Scholar 

  32. Botas C, Álvarez P, Blanco C, Santamaría R, Granda M, Gutiérrez M D et al 2013 Carbon 52 476

    Article  CAS  Google Scholar 

  33. Stankovich S, Dikin D A, Piner R D, Kohlhaas K A, Kleinhammes A, Jia Y et al 2007 Carbon 45 1558

    Article  CAS  Google Scholar 

  34. Zhang J, Yang H, Shen G, Cheng P, Zhang J and Guo S 2010 ChemComm 46 1112

    CAS  Google Scholar 

  35. Ayrat M Dimiev and S Eigler 2017 Graphene oxide fundamentals and applications (West Sussex: Wiley)

  36. Gao X, Jang J and Nagase S 2009 J. Phys. Chem. C 114 832

    Article  Google Scholar 

  37. Jiang Y and Liu J 2019 Energy Environ. Mater. 2 37

    Google Scholar 

  38. Gilliam R J, Graydon J W, Kirk D W and Horpe S J 2007 Int. J. Hydrog. Energy 32 359

    Article  CAS  Google Scholar 

  39. Wan C, Jiao Y, Bao W, Gao G, Wu Y and Li J 2019 J. Mater. Chem. A 7 9556

    Article  CAS  Google Scholar 

  40. Wang Y, Song Y and Xia Y 2016 Chem. Soc. Rev. 45 5925

    Article  CAS  Google Scholar 

  41. Brezesinski T, Wang J, Tolbert S H and Dunn B 2010 Nat. Mater. 9 151

    Article  Google Scholar 

  42. Conway B E 1999 Electrochemical supercapacitors scientific fundamentals and technological applications (New York: Kluwer Academic/Plenum Publishers)

    Google Scholar 

  43. Panmand R P, Patil P, Sethi Y, Kadam S R, Kulkarni M V, Gosavi S W et al 2017 Nanoscale 9 4801

    Article  CAS  Google Scholar 

  44. Abouzari M S, Berkemeier F, Schmitz G and Wilmer D 2009 Solid State Ion. 180 922

    Article  Google Scholar 

Download references

Acknowledgements

PK acknowledges University of Kerala, India, for financial assistance in the form of Research Fellowship. V B acknowledges University of Kerala, India, for funding under the project ‘Setting up of 2D Materials Lab’ and Kerala State Council for Science Technology and Environment, Government of Kerala, India, for financial support under SARD program (Grant No. KSCSTE SARD/003/2016). Authors are thankful to Central Laboratory for Instrumentation and Facilitation (CLIF), University of Kerala, for XRD and XPS measurements and Sophisticated Analytical Instrument Facility (SAIF), Indian Institute of Technology, Mumbai, India, for HRTEM and CHNSO analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V Biju.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3700 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krishnan, P., Biju, V. Effect of electrolyte concentration on the electrochemical performance of RGO–KOH supercapacitor. Bull Mater Sci 44, 288 (2021). https://doi.org/10.1007/s12034-021-02576-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-021-02576-2

Keywords

Navigation