Skip to main content
Log in

Visible light emission and enhanced electrocatalytic activity of pure ZnS nanoparticles synthesized via thermal decomposition route

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

ZnS nanoparticles have been synthesized using facile thermal decomposition route by varying the concentration of sulphur source. Increase in sulphur concentration increases the crystallinity of the synthesized samples, confirmed by calculation of various structural parameters or lattice defects using XRD data and FESEM images. The crystal structure and crystallinity have a great influence on charge separation and the migration of generated charge carriers. Higher the crystallinity, smaller the number of defects. The defects work as traps and recombination centres between generated electrons and holes, which result in deterioration of device performance. A material with better crystalline structure provides longer diffusion length and lifetime of charge carriers. With increase in the sulphur concentration, various other characteristics like optical and electro catalytic properties have also been improved. It is seen that an increase in sulphur concentration increases the conductivity of the synthesized samples as energy band gap has been reduced. The band gap for least crystalline T1 is higher than T2 and T3. This variation in the band gap is in complete agreement with the quantum confinement effect comparing with their crystallite size. Photoluminescence study reveals that prepared samples show emission in visible range i.e., violet, blue, green and orange without adding any dopant. Electrocatalytic performance has been conducted using EIS and CV studies which suggest that increase in sulphur concentration increases the capacitive behaviour. Charge transfer resistance value of highly crystalline sample T3 is found to be 16.26 Ω which is smaller than T1 and T2. The charge transfer resistance of sample T3 could be credited to the enhanced conductivity and crystallinity due to the presence of highest concentration of sulphur in T3 when compared to T1 and T2.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Ebrahimi S, Yarmand B and Naderi N 2017 Adv. Ceram. Prog. 3 6

    Google Scholar 

  2. Sharma H, Shukla P K and Agrawal S 2017 J. Mater. Sci.: Mater. Electron. 28 6226

    CAS  Google Scholar 

  3. Prasad Borah J, Barman J and Sarma K 2008 Chalcogenide Lett. 5 319

    Google Scholar 

  4. La Porta F A, Andrés J, Li M S, Sambrano J R, Varela J A and Longo E 2014 Phys. Chem. Chem. Phys. 16 20127

    Article  Google Scholar 

  5. Ong H and Chang R 2001 Appl. Phys. Lett. 79 3612

    Article  CAS  Google Scholar 

  6. Singh J and Rawat M 2016 J. Bioelectron. Nanotechnol. 1 1

    Google Scholar 

  7. Xu X, Li S, Chen J, Cai S, Long Z and Fang X 2018 Adv. Funct. Mater. 28 1802029

    Article  Google Scholar 

  8. Zhang P, Guan B Y, Yu L and (David) Lou X W 2018 Chemistry 4 162

  9. Zhang Y, Zhang N, Tang Z-R and Xu Y-J 2012 ACS Nano 6 9777

    Article  CAS  Google Scholar 

  10. Chakraborty K, Chakrabarty S, Das P and Ghosh S 2016 Mater. Sci. Eng. B 204 8

    Article  CAS  Google Scholar 

  11. Chaturvedi S, Dave P N and Shah N K 2011 J. Saudi Chem. Soc. 16 307

    Article  Google Scholar 

  12. KhanI Saeed K and Khan I 2019 Arab. J. Chem. 12 908

    Article  Google Scholar 

  13. Limaye M V, Gokhale S, Acharya S A and Kulkarni S K 2008 Nanotechnology 19 415602

  14. Mahesh G 2017 Int. J. Res. Appl. Sci. Eng. Technol. 5 1852

    Article  Google Scholar 

  15. Liu J, Ma J, Liu Y, Song Z, Sun Y et al 2009 J. Alloys Compd. 486 L40

    Article  CAS  Google Scholar 

  16. Vasekar P, Dhakal T, Ganta L, Vanhart D and Desu S 2012 Thin Solid Films 524 86

    Article  CAS  Google Scholar 

  17. Bhushan M, Jha R, Sharma R and Bhardwaj R 2020 Nanotechnology 31 235602

  18. Jothibas M, Manoharan C, Jeyakumar S J, Praveen P, Punithavathy I K and Richard J P 2018 Sol. Energy 159 434

    Article  CAS  Google Scholar 

  19. Saravanan L, Diwakar S, Mohankumar R, Pandurangan A and Jayavel R 2011 Nanomater. Nanotechnol. 1 17

    Article  Google Scholar 

  20. Bujňáková Z and Dutková (Godočíková) E, Mojžiš J, Baláž M, Baláž P and Shpotyuk O 2017 Nanoscale Res. Lett. 12 328

    Google Scholar 

  21. Liu L-N, Liu L-N, Dai J-G, Zhao T-J, Guo S-Y, Hou D S et al 2017 RSC Adv. 7 35075

    Article  CAS  Google Scholar 

  22. Kuppayee M, Nachiyar G K V and Ramasamy V 2011 Appl. Surf. Sci. 257 6779

    Article  CAS  Google Scholar 

  23. Hasan Farooqi M M and Srivastava R K 2017 Mater. Sci. Semicond. Process. 20 61

    Article  Google Scholar 

  24. Coates J 2000 in Meyers R A (ed.) Encyclopedia of analytical chemistry (Chichester: John Wiley & Sons Ltd.) p. 10815

  25. Bhushan M, Jha R and Bhardwaj R 2019 J. Phys. Chem. Solids 135 109021

  26. Iranmanesh P, Saeednia S and Nourzpoor M 2015 Chin. Phys. B 24 1

    Article  Google Scholar 

  27. Sharma R, Sarkar A, Jha R, Sharma A and Sharma D 2019 Int. J. Appl. Ceram. Technol. 17 1400

    Article  Google Scholar 

  28. Geng B, Ma J and Zhan F 2009 Mater. Chem. Phys. 113 534

    Article  CAS  Google Scholar 

  29. O’Neil M, Marohn J and McLendon G 1990 J. Phys. Chem. 94 4356

    Article  Google Scholar 

  30. Jassby D and Wiesner M 2011 Langmuir 27 902

    Article  CAS  Google Scholar 

  31. Chae W, Yoon J, Yu H, Jang D and Kim Y 2004 J. Phys. Chem. B 108 11509

    Article  CAS  Google Scholar 

  32. Wang X, Shi J, Feng Z, Li M and Li C 2011 Phys. Chem. Chem. Phys. 13 4715

    Article  CAS  Google Scholar 

  33. Naik V, Naik H, Somalanaik Y, Neelanjeneallu P, Kalmane H and Prabhakara M 2017 Luminescence 12 32

  34. Tsuruoka T, Liang C, Terabe K and Hasegawa T 2008 Appl. Phys. Lett. 92 91908

    Article  Google Scholar 

  35. Bhushan M and Jha R 2020 Appl. Surf. Sci. 528 146988

  36. Pol S, Pol V, Calderon-Moreno J, Cheylan S and Gedanken A 2008 Langmuir 24 10462

    Article  CAS  Google Scholar 

  37. Ye C, Fang X, Li G H and Zhang L 2004 Appl. Phys. Lett. 85 3035

    Article  CAS  Google Scholar 

  38. Herman I P 1996 in Herman I P (ed.) Optical diagnostics for thin film processing (San Diego: Academic Press) pp. 619

  39. Javed M S, Chen J, Chen L, Xi Y, Zhang C, Wan B et al 2016 J. Mater. Chem. A 4 667

    Article  CAS  Google Scholar 

  40. Mahanthappa M, Kottam N and Yellappa S 2018 Anal. Methods 10 1362

    Article  CAS  Google Scholar 

  41. Mallappa M, Shivaraj Y, Kottam N, Srinivasa C and Vusa R 2016 Sens. Actuators A Phys. 248 104

    Article  Google Scholar 

  42. Saadat M and Nezamzadeh-Ejhieh A 2016 Electrochim. Acta 217 163

    Article  CAS  Google Scholar 

  43. Sheikh-Mohseni M H and Nezamzadeh-Ejhieh A 2014 Electrochim. Acta 147 572

    Article  CAS  Google Scholar 

  44. Derikvandi H and Nezamzadeh-Ejhieh A 2017 J. Photochem. Photobiol. A Chem. 348 68

    Article  CAS  Google Scholar 

  45. Wang M, Zhang Q, Hao W and Sun Z 2011 Chem. Cent. J. 5 73

    Article  CAS  Google Scholar 

  46. Ronngren L, Sjoberg S, Sun Z and Schindler P W 1991 J. Colloid Interface Sci. 145 396

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Medha Bhushan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhushan, M., JHA, R., Bhardwaj, R. et al. Visible light emission and enhanced electrocatalytic activity of pure ZnS nanoparticles synthesized via thermal decomposition route. Bull Mater Sci 44, 261 (2021). https://doi.org/10.1007/s12034-021-02546-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-021-02546-8

Keywords

Navigation