Skip to main content
Log in

Structural, optical and thermo-physical characterizations of co-doped Pr3+ and Nd3+ ions on BaCO3–H3BO3 glasses for microelectronic applications

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Effects of rare-earth oxides (Pr2O3, Nd2O3) along with the addition of structure of H3BO3–BaCO3 glass coordination and its electro-chemical properties have been investigated. The glasses containing Pr3+and Nd3+ in H3BO3:BaCO3:Pr2O3:Nd2O3 glass matrix have been prepared by muffle furnace method. X-ray diffraction (XRD) was used to examine the structural properties of the prepared co-doped Pr3+ and Nd3+ borate glasses. Vibrational spectrum study was carried out using FTIR spectroscopy to identify the structural contributions of each element in the glass matrix and effects on Ba2+ ions as a modifier of the structure. Lower cut-off frequency and the optical band gap energy (Eg) were determined through the optical absorption spectra using UV–Vis spectroscopy. Elemental compositions and its microstructure on the grain boundaries of the sample were determined by SEM–EDX spectrograph. Specific heat capacity (Cp) of the glass was determined using DSC thermogram in the temperature range between 30 and 500°C. Temperature dependence of thermal conductivity associated with electrical conductivity, thermal diffusivity and effusivity of the glass specimen were measured. Effects of rare-earths on the dielectric properties of barium borate were investigated at the room temperature. The mechanical properties, such as microhardness number (Hv), yield strength (σv) and stiffness constant (C11) of the Pr–Nd–BB glass were measured by Vickers hardness test. The gamma-ray shielding parameters of this glass matrix were studied. The results were presented in this paper which proves the sample to be useful for radiation shielding and many other optical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19

Similar content being viewed by others

References

  1. Fedorov P P, Kokh A E and Kononova N G 2002 Usp. Khim. 71 741

    Article  Google Scholar 

  2. Markova T S, Yanush O V, Polyakova I G, Pevzner B Z and Klyuev V P 2005 J. Glass Phys. Chem. 31 721

    Article  CAS  Google Scholar 

  3. Santos S N, Almeida J M, Paula K T, Tomazio N B, Mastelaro V R and Mendonça C R 2017 J. Opt. Mater. 73 16

    Article  CAS  Google Scholar 

  4. Yu H, Chen Q and Jin Z 1999 Phase Equilib. 20 479

    Article  CAS  Google Scholar 

  5. Yiannopoulos Y D, Chryssikos G D and Kamitsos E I 2001 J. Phys. Chem. Glasses 42 164

    CAS  Google Scholar 

  6. Moe K 1962 J. Phys. Chem. Glasses 3 208

    Google Scholar 

  7. Barbi S, Mugoni C, Montorsi M, Affatigato M, Gatto C and Siligardi C 2018 J. Non-Cryst. Solids 481 239

    Article  CAS  Google Scholar 

  8. Chimalawong P, Kirdsiri K, Kaewkhao J and Limsuwan P 2012 Procedia Eng. 32 690

    Article  CAS  Google Scholar 

  9. Meza-Rocha A N, Speghini A, Bettinelli M and Caldiño U 2016 J. Lumin. 176 235

    Article  CAS  Google Scholar 

  10. Cai J L, Li R Y, Zhao C J, Tie S L, Wan X and Shen J Y 2012 Opt. Mater. 34 1112

    Article  CAS  Google Scholar 

  11. Lakshminarayana G, Baki S O, Lira A, Kityk I V, Caldiño U, Kaky K M et al 2017 J. Lumin. 186 283

    Article  CAS  Google Scholar 

  12. Brahmachary K, Rajesh D, Babu S and Ratnakaram Y C 2014 J. Mol. Struct. 1064 6

    Article  CAS  Google Scholar 

  13. Lakshminarayana G, Sagar R V and Buddhudu S 2008 Phys. B: Condens. Matter 403 81

    Article  CAS  Google Scholar 

  14. Saeed A, Elbashar Y H and El Khameesy S U 2018 Silicon 10 569

    Article  CAS  Google Scholar 

  15. Goyal P, Sharma Y K, Pal S, Bind U C, Huang S C and Chung S L 2017 J. Non-Cryst. Solids 463 118

    Article  CAS  Google Scholar 

  16. Reddy C V, Krishna C R, Thampy U U, Reddy Y P, Rao P S and Ravikumar R V 2011 Phys. Scr. 84 025602

    Article  Google Scholar 

  17. El-Batal A M, Saeed A, Hendawy N, El-Okr M M and El-Mansy M K 2021 J. Non-Cryst. Solids 559 120678

    Article  CAS  Google Scholar 

  18. Tauc J and Menth A 1972 J. Non-Cryst. Solids 8 569

    Article  Google Scholar 

  19. Kothandan D and Jeevan Kumar R 2015 Int. J. ChemTech. Res. 8 310

    CAS  Google Scholar 

  20. Kittel C (ed) 1965 Introduction to solid state physics (New York: John Wiley & Sons)

    Google Scholar 

  21. Kahveci O, Çadirli E, Arı M, Tecer H and Gündüz M 2019 Mater. Res. 22 1

    Article  Google Scholar 

  22. Hall M R (ed.) 2010 Materials for energy efficiency and thermal comfort in buildings (Elsevier)

  23. Morsi R M, Abdelghany A M and Morsi M M 2015 J. Mater. Sci. Mater. 26 5120

    Article  CAS  Google Scholar 

  24. Bhat S, Khosa S K, Kotru P N and Tandon R P 1995 Mater. Sci. Eng. B 30 7

    Article  Google Scholar 

  25. Von Hippel A, Gross E P, Jelatis J G and Geller M 1953 Phys. Rev. 91 568

    Article  Google Scholar 

  26. Morsi R M and Ibrahiem S 2011 Phys. B: Condens. Matter 406 2982

    Article  CAS  Google Scholar 

  27. Yoshioka M and Yoshioka N 1995 J. Appl. Phys. 78 3431

    Article  CAS  Google Scholar 

  28. Onitsch E M 1956 Mikroskopie 95 12

    Google Scholar 

  29. Zhang H W, Subhash G, Jing X N, Kecskes L J and Dowding R J 2006 Philos. Mag. 86 333

    CAS  Google Scholar 

  30. Naik S N and Walley S M 2020 J. Mater. Sci. 55 2661

    Article  CAS  Google Scholar 

  31. Wooster W A 1953 Rep. Prog. Phys. 16 62

    Article  Google Scholar 

  32. Lawn B R and Marshall D B 1979 J. Am. Ceram. Soc. 62 347

    Article  CAS  Google Scholar 

  33. Goldschmidt V M 1926 Naturwissenschaften 14 477

    Article  CAS  Google Scholar 

  34. Rammah Y S, Abouhaswa A S and Salama A H 2019 J. Theor. Appl. Phys. 13 155

    Article  Google Scholar 

  35. Bagheri R, KhorramiMoghddam A and Yousefnia H 2017 J. Nucl. Eng. Tech. 49 216

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Priya Murugasen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vinothkumar, P., Dhavamurthy, M., Mohapatra, M. et al. Structural, optical and thermo-physical characterizations of co-doped Pr3+ and Nd3+ ions on BaCO3–H3BO3 glasses for microelectronic applications. Bull Mater Sci 44, 257 (2021). https://doi.org/10.1007/s12034-021-02545-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-021-02545-9

Keywords

Navigation