Skip to main content
Log in

Electrical properties of praseodymium and samarium co-doped ceria electrolyte for low-temperature solid oxide fuel cell application

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

In this study, we aimed to investigate the structural, morphology and electrical properties of praseodymium and samarium co-doped ceria electrolytes, synthesized using the sol–gel method, for use as an electrolyte in low-temperature solid oxide fuel cell (LT-SOFC) applications. The X-ray diffraction result shows that all of the samples crystallized into a single-phase cubic fluorite form. The average relative densities of samples sintered at 1400°C is 97.9% of theoretical densities, indicating that they can be used as an electrolyte in LT-SOFC applications. A fascinating and maximum value of ionic conductivity \(1.94 \times 10^{ - 2}\) S cm–1 and least activation energy (Ea = 0.55 eV) were found for the composition Ce0.8Sm0.1Pr0.1O1.9 at a temperature of 500°C. The ionic conductivity and activation energies of compositions Ce0.85Sm0.1Pr0.05O1.925 and Ce0.9Sm0.05Pr0.05O1.95 found at 500°C were (\(1.41 \times 10^{ - 2}\) S cm–1, Ea = 0.59 eV) and (\(5.95 \times 10^{ - 3}\) S cm–1, Ea = 0.64 eV), respectively. Moreover, all the Praseodymium and samarium co-doped ceria (PrSDC) samples conduct at lower temperature of 300°C. All these results confirmed that praseodymium and samarium co-doped ceria can be useful as a solid electrolyte in LT-SOFC applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Singhal S C and Kendall K 2003 High-temperature solid oxide fuel cells: Fundamentals, design and applications Elsevier Science 1 83

    Google Scholar 

  2. Mat M D, Liu X, Zhu Z and Zhu B 2007 Int. J. Hydrogen Energy 32 796

    Article  CAS  Google Scholar 

  3. Park S, Vohs J M and Gorte R J 2000 Nature 404 265

    Article  CAS  Google Scholar 

  4. Choudhury A, Chandra H and Arora A 2013 Ren. Sust. Energy Rev. 20 430

    Article  CAS  Google Scholar 

  5. Wang F-Y, Chen S, Wang Q, Yu S and Cheng S 2004 Catal. Today 97 189

    Article  CAS  Google Scholar 

  6. Mizutani Y, Tamura M, Kawai M and Yamamoto O 1994 Solid State Ion. 72 271

    Article  CAS  Google Scholar 

  7. Taroco H A, Santos J A F, Domingues R Z and Matencio T 2011 Adv. Ceram Brasil 307 423

    Google Scholar 

  8. Brant M, Matencio T, Dessemond L and Domingues R 2006 Solid State Ion. 177 915

    Article  CAS  Google Scholar 

  9. Jaiswal N, Tanwar K, Suman R, Kumar D, Upadhyay S and Parkash O 2019 J. Alloys Comp. 781 984

    Article  CAS  Google Scholar 

  10. Gao Z, Mogni L V, Miller E C, Railsback J G and Barnett S A 2014 Energy Environ. Sci 9 1602

    Article  CAS  Google Scholar 

  11. Wachsman E D and Lee K T 2011 Science 334 935

    Article  CAS  Google Scholar 

  12. Zha S, Xia C and Meng G 2003 J. Power Sources 115 44

    Article  CAS  Google Scholar 

  13. Arabacı A and Öksüzömer M F 2012 Ceram. Int. 38 6509

    Article  CAS  Google Scholar 

  14. Altaf F, Batool R, Gill R, Abbas G, Raza R, Khan M A et al 2019 Ceram. Int. 45 10330

    Article  CAS  Google Scholar 

  15. Suzuki T, Funahashi Y, Yamaguchi T, Fujishiro Y and Awano M 2009 Electrochem. 77 134

    Article  CAS  Google Scholar 

  16. Maricle D, Swarr T and Karavolis S 1992 Solid State Ion. 52 173

    Article  CAS  Google Scholar 

  17. Raharjo J, Setya Aninda R and Ami Lestari N 2017 J. Phys. Conf. Series 123 012077

    Google Scholar 

  18. Aydin F, Demir I and Mat M 2014 Int. J. Eng. Sci. Technol. 17 25

    Google Scholar 

  19. Liu M, Uba F and Liu Y 2020 J. Am. Ceram. Soc. 103 5325

    Article  CAS  Google Scholar 

  20. Fan L, Zhu B, Su P-C and He C 2018 Nano Energy 45 148

    Article  CAS  Google Scholar 

  21. Eressa L A and Rao P B 2020 Mater. Chem. Phys. 242 121914

    Article  CAS  Google Scholar 

  22. Irfana S, Junsung A, Parvathi N, Srikar M, Sunaina P, Nivedithaa V et al 2018 Mater. Chem. Phys. 05 136

    Google Scholar 

  23. Bhabu K A, Theerthagiri J, Madhavan J, Balu T, Muralidharan G and Rajasekaran T R 2016 J. Mater. Sci.: Mater. Electron. 27 1566

    Google Scholar 

  24. Preethi S and Babu K S 2012 J. Alloys Comp. 792 1068

    Article  CAS  Google Scholar 

  25. Singh N, Singh N K, Kumar D and Parkash O 2012 J. Alloys Comp. 519 129

    Article  CAS  Google Scholar 

  26. Jaiswal N, Kumar D, Upadhyay S and Parkash O 2014 Ionics 20 45

    Article  CAS  Google Scholar 

  27. Puente-Martínez D, Díaz-Guillén J, Montemayor S, Díaz-Guillén J, Burciaga-Díaz O, Bazaldúa-Medellín M et al 2020 Int. J. Hydrogen Energy 45 14062

    Article  CAS  Google Scholar 

  28. Swatsitang E, Phokha S, Hunpratub S and Maensiri S 2016 Mater. Des. 108 27

    Article  CAS  Google Scholar 

  29. Piumetti M, Bensaid S, Andana T, Dosa M, Novara C, Giorgis F et al 2017 Catalysts 7 174

    Article  CAS  Google Scholar 

  30. Spanier J E, Robinson R D, Zhang F, Chan S-W and Herman I P 2001 Phys. Rev. B 64 245407

    Article  CAS  Google Scholar 

  31. Eressa L A and Rao P B 2020 Chem. Tech. 12 28

    Google Scholar 

  32. Dos Santos M, Lima R, Riccardi C, Tranquilin R, Bueno P R, Varela J A et al 2008 Mater. Lett. 62 4509

    Article  CAS  Google Scholar 

  33. Stojmenović M, Žunić M, Gulicovski J, Bajuk-Bogdanović D, Holclajtner-Antunović I, Dodevski V et al 2015 J. Mater. Sci. 50 3781

    Article  CAS  Google Scholar 

  34. Jeyanthi C E, Siddheswaran R, Kumar P, Chinnu M K, Rajarajan K and Jayavel R 2015 Mater. Chem. Phys. 151 22

    Article  CAS  Google Scholar 

  35. Shajahan I, Ahn J, Nair P, Medisetti S, Patil S, Niveditha V et al 2018 Mater. Chem. Phys. 216 136

    Article  CAS  Google Scholar 

  36. Ahn K, Yoo D S, Prasad D H, Lee H-W, Chung Y-C and Lee J-H 2012 Chem. Mater. 24 4261

    Article  CAS  Google Scholar 

  37. Dohcevic-Mitrovic Z, Radovic M, Scepanovic M, Grujic-Brojcin M, Popovic Z, Matovic B et al 2007 Appl. Phys. Lett. 91 203118

    Article  CAS  Google Scholar 

  38. Jais A A, Ali S M, Anwar M, Somalu M R, Muchtar A, Isahak W N R W et al 2017 Ceram. Int. 43 8119

    Article  CAS  Google Scholar 

  39. Ali S M, Anwar M, Abdalla A M, Somalu M R and Muchtar A 2017 Ceram. Int. 43 1265

    Article  CAS  Google Scholar 

  40. Matović B, Stojmenović M, Pantić J, Varela A, Žunić M, Jiraborvornpongsa N et al 2014 Asian Ceram. Soc. 2 117

    Article  Google Scholar 

  41. Xiaomin L, Qiuyue L, Lili Z and Xiaomei L 2015 J. Rare Earths 33 411

    Article  CAS  Google Scholar 

  42. Singh V, Babu S, Karakoti A S, Agarwal A and Seal S 2010 J. Nanosci. Nanotech. 10 6495

    Article  CAS  Google Scholar 

  43. Wang F-Y, Wan B-Z and Cheng S 2005 J. Solid State Electrochem. 9 168

    Article  CAS  Google Scholar 

  44. Chockalingam R G K and Basu S 2014 J. Power Sources 250 80

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lemessa Asefa Eressa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eressa, L.A., Rao, P.V.B. Electrical properties of praseodymium and samarium co-doped ceria electrolyte for low-temperature solid oxide fuel cell application. Bull Mater Sci 44, 255 (2021). https://doi.org/10.1007/s12034-021-02543-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-021-02543-x

Keywords

Navigation