Skip to main content
Log in

Effective utilization of light by transparent conducting oxide layer to enhance the performance of the silicon heterojunction solar cells

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

This article presents effective utilization of light by transparent conducting oxide (TCO) layer to enhance the performance of c-Si/a-Si:H heterojunction solar cells (HJSC) by simulation. The optical and recombination losses in solar cells severely deteriorate the short circuit density (Jsc), open circuit voltage (Voc) and then efficiency (η) of the solar cells. In order to reduce the optical losses, recombination losses and to improve the efficiency of solar cell devices, the c-Si/a-Si:H HJSC performance was investigated by planner and textured indium tin oxide (ITO) and zinc oxide (ZnO) layers as front TCO layer with AFORSHET simulations tool. Absorption and reflection spectra of ITO and ZnO layers were analysed separately before incorporating in to the c-Si/a-Si:H HJSC. The estimated solar cell parameter values of 763.7 mV, 40.96 mA cm−2, 85.91% and 26.86% correspond to Voc, Jsc, FF (fill factor) and η respectively for the cells with plane ZnO layers. It is found that the best values of Voc (763.7 mV), Jsc (41.87 mA cm−2), FF (85.91%) and η (27.47%) were obtained with textured ZnO layer. This is mainly due to reduced reflection losses and also increased absorption of photons in c-Si wafer with texturing of TCO layer, which results in increase of short circuit density of solar cells. The efficiency of solar cells with ITO is slightly lower than the ZnO layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. De Wolf S, Descoeudres A, Holman Z C and Ballif C 2012 Green 2 7

    Article  Google Scholar 

  2. Ramanujam J and Verma A 2012 Mater. Express 2 177

    Article  CAS  Google Scholar 

  3. Wilfried G J H M and van Sark L K 2012 Physics and technology of amorphouscrystalline heterojunction silicon solar cells (Berlin, Heidelberg: Springer), https://doi.org/10.1007/978-3-642-22275-7

    Book  Google Scholar 

  4. Tuna O, Selamet Y, Aygun G and Ozyuzer L 2010 J. Phys. D Appl. Phys. 43 055402

    Article  Google Scholar 

  5. Fan Q H, Chen C, Liao X, Xiang X, Cao X, Ingler W et al 2010 J. Appl. Phys. 107 034505

    Article  Google Scholar 

  6. Ryu H, Kang J, Han Y, Kim D, Pak J J, Park W K et al 2003 J. Electron. Mater. 32 919

    Article  CAS  Google Scholar 

  7. Aouaj M A, Diaz R, Belayachi A, Rueda F and Abd-Lefdil M 2009 Mater. Res. Bull. 44 1458

    Article  CAS  Google Scholar 

  8. Zhu B L, Zhu S J, Wang J, Wu J, Zeng D W and Xie C S 2011 Phys. E Low-Dimens. Syst. Nanostruct. 43 1738

    Article  CAS  Google Scholar 

  9. Lien S-Y 2010 Thin Solid Films 518 S10

    Article  CAS  Google Scholar 

  10. Kulkarni A K, Schulz K H, Lim T-S and Khan M 1997 Thin Solid Films 1 308

    Google Scholar 

  11. Cruz A, Wang E C, Morales-Vilches A B, Meza D, Neubert S, Szyszka B et al 2019 Sol. Energy Mater. Sol. Cells 195 339

    Article  Google Scholar 

  12. Bendjebbar K, Rahal W L, Rached D and Bahlouli S 2020 Optik (Stuttg) 212 164741

    Article  CAS  Google Scholar 

  13. Kanneboina V, Basumatary P and Agarwal P 2019 AIP Conf. Proc. 2091 020016

    Article  Google Scholar 

  14. Kanneboina Venkanna, Madaka Ramakrishna and Agarwal P 2018 Sol. Energy 166 255

    Article  CAS  Google Scholar 

  15. Yao Y, Xu X, Zhang X, Zhou H, Gu X and Xiao S 2018 Mater. Sci. Semicond. Process. 77 16

    Article  CAS  Google Scholar 

  16. Singh S, Kumar S and Dwivedi N 2012 Sol. Energy 86 1470

    Article  CAS  Google Scholar 

  17. Dwivedi N, Kumar S, Bisht A, Patel K and Sudhakar S 2013 Sol. Energy 88 31

    Article  CAS  Google Scholar 

  18. Madaka R, Kanneboina V and Agarwal P 2018 Thin Solid Films 662 155

    Article  CAS  Google Scholar 

  19. Masuko K, Shigematsu M, Hashiguchi T, Fujishima D, Kai M, Yoshimura N et al 2014 IEEE J. Photovolt. 4 1433

    Article  Google Scholar 

  20. Taguchi M, Yano A, Tohoda S, Matsuyama K, Nakamura Y, Nishiwaki T et al 2014 IEEE J. Photovolt. 4 96

    Article  Google Scholar 

  21. Huang H, Tian G, Zhou L, Yuan J, Fahrner W R, Zhang W et al 2018 Chin. Phys. B 27 038502

    Article  Google Scholar 

  22. Varache R, Leendertz C, Gueunier-Farret M E, Haschke J, Muñoz D and Korte L 2015 Sol. Energy Mater. Sol. Cells 141 14

    Article  CAS  Google Scholar 

  23. Zhao L, Zhou C L, Li H L, Diao H W and Wang W J 2008 Sol. Energy Mater. Sol. Cells 92 673

    Article  CAS  Google Scholar 

  24. Wen X, Zeng X, Liao W, Lei Q and Yin S 2013 Sol. Energy 96 168

    Article  CAS  Google Scholar 

  25. Stangl R, Kriegel M and Schmidt M 2007 In AFORS-HET, version 2.2, conf. rec. 2006 IEEE 4th world conf. photovolt. energy conversion WCPEC-4 vol 2 p 1350

  26. Stangl R, Kriegel M, Maydell K V, Korte L, Schmidt M and Fuhs W 2005 In A conf. rec. IEEE photovolt. spec. conf. p 1556

  27. Kanneboina Venkanna 2021 J. Comput. Electron. 20 344

    Article  CAS  Google Scholar 

  28. Ide Y, Saito Y, Yamada A and Konagai M 2004 Jpn. J. Appl. Phys. 43 2419

    Article  CAS  Google Scholar 

  29. Stangl R, Leendertz C and Haschke J 2010 in Solar Energy Rugescu R D (ed) (IntechOpen), https://doi.org/10.5772/8073

  30. Fonash S J 2010 Solar cell device physics 2nd edn (Amsterdam: Elsevier) https://doi.org/10.1016/0025-5408(82)90173-8

    Book  Google Scholar 

  31. Schropp R E I and Zeman M 1998 Amorphous and microcrystalline silicon solar cells: Modeling, materials and device technology (Berlin, Heidelberg: Springer) https://doi.org/10.1007/978-1-4615-5631-2

    Book  Google Scholar 

  32. Iftiquar S M, Park H, Kim S and Yi J 2020 Sol. Energy Mater. Sol. Cells 204 110238

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the Helmholtz-Zentrum Berlin for providing AFORS-HET simulation software.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Venkanna Kanneboina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanneboina, V. Effective utilization of light by transparent conducting oxide layer to enhance the performance of the silicon heterojunction solar cells. Bull Mater Sci 44, 233 (2021). https://doi.org/10.1007/s12034-021-02534-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-021-02534-y

Keywords

Navigation