Skip to main content
Log in

Effect of metal doping on visible light absorption and optical properties of lithium niobate (LiNbO3) crystal: a first-principles calculation

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Electronic and optical properties of pristine and metal-doped lithium niobate crystals are investigated by using first-principles DFT calculations. The results on optical properties suggest that there is a shift in the absorption edge towards visible region (red-shift) for metal-doped structures, in comparison with the pristine lithium niobite. A series of metals are used for doping and it is found that the absorption edge is shifted significantly to the visible region for the dopants; gold (Au), silver (Ag), aluminium (Al) and copper (Cu) due to surface plasma resonance. However, for other metal dopants like iron (Fe), manganese (Mn), molybdenum (Mo) and nickel (Ni), the absorption is slightly improved in the visible region and red-shift is observed. The bandgap of all the doped structures is found to be reduced, this might be proven advantageous for photovoltaic applications, which requires high optical absorption in the visible region. The dielectric constant and refractive index of the pristine and doped structures are also calculated and it is observed that the absorption trend is in accordance with dielectric constant. The optical absorption is enhanced in the visible region due to doping of selected metals (M = Au, Ag, Al, Cu, Fe, Mn, Mo and Ni) making M-lithium niobite a promising material for optoelectronic- and photonic-based applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Atta N F, Galal A, Ads E E and Pan L 2016 Intech 93052 107

    Google Scholar 

  2. Quan L N, Rand B P, Friend R H, Mhaisalkar S G, Lee T W and Sargent E H 2019 Chem. Rev. 119 7444

    Article  CAS  Google Scholar 

  3. Huang H, Polavarapu L, Sichert J A, Susha A S, Urban A S and Rogach A L 2016 NPG Asia Mater. 8 328

    Article  CAS  Google Scholar 

  4. Hu F, Zhang H, Sun C, Yin C, Lv B, Zhang C et al 2015 ACS Nano. 9 12410

    Article  CAS  Google Scholar 

  5. Amri A M A, Cheng B and He J 2018 IEEE Trans. Nanotechnol. 18 1

    Article  Google Scholar 

  6. Dogan F, Lin H, Viry M G and Pena O 2015 Sci. Technol. Adv. Mater. 16 020301

  7. Negi S, Mittal P and Kumar B 2020 J. Electron. Mater. 49 4610

    Article  CAS  Google Scholar 

  8. Quintero O A J, Sanchez R S, Rincon M and Sero I M 2015 J. Phys. Chem. Lett. 6 1883

    Article  CAS  Google Scholar 

  9. Tan Z K, Moghaddam R S and Lai M L 2014 Nat. Nanotech. 9 687

    Article  CAS  Google Scholar 

  10. Negi S, Mittal P and Kumar B 2020 J. Inf. Disp. 28 1

    Article  Google Scholar 

  11. Negi S, Mittal P and Kumar B 2018 Microsyst. Technol. 24 1

    Article  CAS  Google Scholar 

  12. Prezas P R and Graça M P F 2016 in Applications of molecular spectroscopy to current research in the chemical and biological sciences, Intech, 2016 32 https://doi.org/10.5772/61896

  13. Klein R S, Kugel G E, Maillard A, Polgar K and Peter A 2003 Optic. Mater. 22 171

    Article  CAS  Google Scholar 

  14. Sohler W, Hu H, Ricken R, Quiring V, Vannahme C, Herrmann H et al 2008 Opt. Photonics News 19 24

    Article  CAS  Google Scholar 

  15. Abdi F, Fontana M D, Aillerie M and Bourson P 2016 Appl. Phys. A 83 427

    Article  CAS  Google Scholar 

  16. Javid A, Khan Z, Mehmood Z and Nabi A 2018 Int. J. Mod. Phys. B 32 1850168

    Article  CAS  Google Scholar 

  17. Sun B, Gou J, Wang J and Jiang Y 2019 Proceedings of 9th international symposium on advanced optical manufacturing and testing technologies: optoelectronic materials and devices for sensing and imaging

  18. Choudhary S and Garg A 2019 IEEE Trans. Nanotechnol. 18 989

    Article  CAS  Google Scholar 

  19. Rahaman M and Hossain A K M 2018 RCS Adv. 8 33010

    CAS  Google Scholar 

  20. Song K and Han X 2013 J. Alloys Compd. 551 118

    Article  CAS  Google Scholar 

  21. Pathak Nimai, Ghosh Partha, Mukherjee and Mandal Balaji 2020 RSC Adv. 10 31070

  22. Hui H D, Sheng Y J, Long C Q, Jie W M, Qilong L, Liang S et al 2014 Chin. Phys. Lett. 31 037103

  23. Bachiri A E, Hasnaoui M E, Bennani F and Bousselamti M 2016 J. Mater. Environ. Sci. 7 3353

    Google Scholar 

  24. Vilela D, González M C and Escarpa A 2012 Anal. Chim. Acta 751 24

    Article  CAS  Google Scholar 

  25. Huang X and Sayed M A E 2010 J. Adv. Res. 1 13

    Article  Google Scholar 

  26. Li M, Shi L, Xie T, Jing C, Xiu G and Long Y T 2017 ACS Sensors 2 263

    Article  CAS  Google Scholar 

  27. Jabeen M and Haxha S 2018 IEEE J. Quant. Electron. 54 1

    Article  Google Scholar 

  28. Negi S, Mittal P, Kumar B and Juneja P 2019 Microelectron. Eng. 218 111154

  29. Sena P, Sen P K, Bhatt R, Kar S, Shukla V and Bartwal K S 2004 Solid State Commun. 129 747

    Article  CAS  Google Scholar 

  30. Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    Article  CAS  Google Scholar 

  31. Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188

    Article  Google Scholar 

  32. Kochar R and Choudhary S 2018 IEEE J. Quant. Electron. 54 1

    Article  Google Scholar 

  33. Tran F and Blaha P 2009 Phys. Rev. Lett. 102 226401

  34. Hossain M M 2019 Heliyon 5 01436

    Google Scholar 

  35. Martin R M 2014 Basic theory and practical methods (New York: Cambridge University Press)

    Google Scholar 

  36. Griffithis D J 1999 Introduction to electrodynamics (New Jersey: Prentice Hall)

    Google Scholar 

  37. Weis R S and Gaylord T K 1985 Appl. Phys. A 37 191

    Article  Google Scholar 

  38. Liu X, Que W, He Y and Zhou H 2018 J. Adv. Dielectr. 8 1820002

    Article  CAS  Google Scholar 

  39. Yu J and Liu X 2007 Mat. Lett. 61 355

    Article  CAS  Google Scholar 

  40. Mittal P 2021 J. Soc. Inf. Disp.. https://doi.org/10.1002/jsid.1007

    Article  Google Scholar 

  41. Fares N E H and Bouarissa N 2014 Mater. Res. 21 20170964

    Google Scholar 

  42. Kong L J, Liu G H and Zhang Y J 2016 RSC Adv. 6 10919

    Article  CAS  Google Scholar 

  43. Chamola P and Mittal P 2020 Int. J. Light Electron Opt. 224 165626

  44. Rizwan M, Ali A, Usman Z, Khalid N R, Jin H B and Cao C 2019 Phys. Condens. Matter 552 52

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Poornima Mittal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raturi, A., Mittal, P. & Choudhary, S. Effect of metal doping on visible light absorption and optical properties of lithium niobate (LiNbO3) crystal: a first-principles calculation. Bull Mater Sci 44, 237 (2021). https://doi.org/10.1007/s12034-021-02527-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-021-02527-x

Keywords

Navigation