Skip to main content
Log in

Improved visible-light activity for oxidative discolouration of methyl orange by TiO2/thiourea photocatalyst prepared via ball-milling/low thermal treatment

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

In this work, it is demonstrated that visible-light photocatalytic activity for degrading methyl orange (MO) could be improved by co-milling of TiO2 (Degussa P25) with thiourea. The photocatalysts have been prepared by combined mechanochemical/thermal synthesis. Structures and morphology of the as-prepared TiO2 nanoparticles were characterized by X-ray powder diffraction, N2 adsorption–desorption isotherms, UV‒Vis diffuse reflectance spectroscopy and scanning electron microscopy. It is shown that co-milling of TiO2 with thiourea favours formation of brookite phase and it results in the occurrence of more porous structures. The optical properties are modified and the band gap energy values of the samples become smaller, when thiourea is introduced. Ball-milled samples show better photocatalytic activities during oxidative discolouration of MO than that of the initial TiO2. The discolouration degree is above 99% for ball-milled TiO2/thiuourea nanoparticles, while it is 2% for pure and 15% for ball-milled TiO2.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Bach U, Lupo D, Comte P, Moser J E, Weissörtel F, Salbeck J et al 1998 Nature 395 583

    Article  CAS  Google Scholar 

  2. Chiron S, Fernandez-Alba A, Rodriguez A and Garcia-Calvo E 2000 Water Res. 34 366

    Article  CAS  Google Scholar 

  3. Fujishima A, Rao T N and Tryk D A 2000 J. Photochem. Photobiol. C 1 1

    Article  CAS  Google Scholar 

  4. Anpo M and Takeuchi M 2003 J. Catal. 216 505

    Article  CAS  Google Scholar 

  5. Marschall R and Wang L 2014 Catal. Today 225 135

    Article  CAS  Google Scholar 

  6. Balaganapathi T, Kani Amuthan B, Vinoth S and Thilakan P 2017 Mater. Res. Bull. 91 114

    Article  CAS  Google Scholar 

  7. Kitano M, Funatsu K, Matsuoka M, Eushima M and Anpo M 2006 J. Phys. Chem. C 110 25272

    Google Scholar 

  8. Yates H M, Nolan M G, Sheel D W and Pemble M E 2006 J. Photochem. Photobiol. A 179 213

    Article  CAS  Google Scholar 

  9. Yang S and Gao L 2004 J. Am. Ceram. Soc. 87 1805

    Google Scholar 

  10. Sano T, Negishi N, Koike K, Takeuchi K and Matsuzawa S 2004 J. Mater. Chem. 14 380

    Article  CAS  Google Scholar 

  11. Liu G, Wang X, Wang L, Chen Z, Li F, Lu G Q et al 2009 J. Colloid Interface Sci. 334 171

    Article  CAS  Google Scholar 

  12. Livraghi S, Czoska A M and Paganini M C 2009 J. Solid State Chem. 182 164

    Article  CAS  Google Scholar 

  13. Kobayakawa K, Murakami Y and Sato Y 2005 J. Photochem. Photobiol. A 170 177

    Article  CAS  Google Scholar 

  14. Wu J T, Kuo Ch Y and Wu Ch H 2016 Desalin. Water Treat. 57 5451

    Google Scholar 

  15. Morris Hotsenpiller P A, Bolt J D, Farneth W E, Lowekamp J B and Rohrer G S 1998 J. Phys. Chem. B 102 3226

    Article  Google Scholar 

  16. Landmann M, Rauls E and Schmidt W G 2012 J. Phys. Condens. Matter 24 195503

    Article  CAS  Google Scholar 

  17. Anpo M 2004 Bull. Chem. Soc. Jpn. 77 1427

    Article  CAS  Google Scholar 

  18. Stafford U, Gray K A, Kamat P V and Varma A 1993 Chem. Phys. Lett. 205 55

    Article  CAS  Google Scholar 

  19. Riegal G and Bolton J R 1995 J. Phys. Chem. 1995 4215

    Article  Google Scholar 

  20. Basca R R and Kiwi J 1998 Appl. Catal. B: Environ. 16 19

    Article  Google Scholar 

  21. Di Paola A, Cufalo G, Addamo M, Bellardita M, Campostrini R, Ischia M et al 2008 Colloids Surf. A 317 366

    Article  CAS  Google Scholar 

  22. El-Sheikh S M, Khedr T M, Zhang G, Vogiazi V, Ismail A A, O´Shea K et al 2017 Chem. Eng. J. 310 428

    Article  CAS  Google Scholar 

  23. Patterson A L 1939 Phys. Rev. 56 978

    Article  CAS  Google Scholar 

  24. Orel Z C, Gunde M K and Orel B 1997 Prog. Org. Coat. 30 59

    Article  Google Scholar 

  25. Begin-Colin S, Girot T, Le Caër G and Mocellin A 2000 J. Solid State Chem. 149 41

    Article  CAS  Google Scholar 

  26. Rezaee M, Mousavi Khoie S M and Liu K H 2011 CrystEngComm 13 5055

    Article  CAS  Google Scholar 

  27. Xiong S, Tang Y, Ng H S, Zhao X, Jiang Z, Chen Z et al 2013 Toxicology 304 132

    Article  CAS  Google Scholar 

  28. Li W, Ni C, Lin H, Huang C P and Shah S I 2004 J. Appl. Phys. 96 6663

    Article  CAS  Google Scholar 

  29. Dulian P, Buras M and Źukowski W 2016 Chem. Technol. 18 68

    CAS  Google Scholar 

  30. Nadtochenko V, Denisov N, Gorenberg A, Kozlov Yu, Chubukov P, Renfigo J A et al 2009 Appl. Catal. B: Environ. 91 460

    Article  CAS  Google Scholar 

  31. Sing K S W, Everett D H, Haul R A W, Moscou L, Pierotti R A, Rouquérol J et al 1985 Pure Appl. Chem. 57 603

    Article  CAS  Google Scholar 

  32. Banerjee S, Pillai S C, Falaras P, O′Shea K E, Byrne J A and Dionysiou D D 2014 J. Phys. Chem. Lett. 5 2543

  33. Hamadanian M, Reisi-Vanani A and Majedi A 2009 Mater. Chem. Phys. 116 376

    Article  CAS  Google Scholar 

  34. Kumar S G and Devi L G 2011 J. Phys. Chem. A 115 13211

    Article  CAS  Google Scholar 

  35. Darmograi G, Kus M, Martin-Cassin G, Zajac J, Cavaliere S and Prelot B 2017 Mater. Res. Bull. 94 70

    Article  CAS  Google Scholar 

  36. Kandiel T A, Robben L, Alkaim A and Bahnemann D 2013 Photochem. Photobiol. Sci. 12 602

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Slovak Research and Development Agency APVV (no. 19-0526), Scientific Grant Agency VEGA (no. 2/0055/19) and bilateral cooperation project between Slovak Academy of Sciences and Bulgarian Academy of Sciences (Project: Insight to local structure of doped/nanocrystalline complex oxides by sophisticated physico-chemical methods. Educational approach. Period 2021–2022). MB thanks APVV (no. 18-0357) and VEGA (no. 2/0044/18) for the support to his work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Fabián.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 230 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kostova, N.G., Fabián, M., Briančin, J. et al. Improved visible-light activity for oxidative discolouration of methyl orange by TiO2/thiourea photocatalyst prepared via ball-milling/low thermal treatment. Bull Mater Sci 44, 228 (2021). https://doi.org/10.1007/s12034-021-02522-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-021-02522-2

Keywords

Navigation