Skip to main content
Log in

Ragi (finger millet) starch-based gel electrolytes for dye-sensitized solar cell application

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Starch was isolated from ragi grains using alkali extraction method. Crystallinity of isolated ragi starch (RGS) was studied using X-ray diffraction technique, and thermal properties of RGS were characterized by differential scanning calorimetry. Novel ragi starch (RGS) based gel electrolyte for dye-sensitized solar cells (DSSCs) was prepared and characterized for the first time. In the first part, the effects of additives guanidinium thiocyanate (GSCN) and N-methylbenzimidazole (NMBI) on the photovoltaic performance of DSSC were investigated. Considerable improvement of open circuit voltage was found in the addition of only NMBI to the electrolyte, while only addition of GSCN has an influence on the short circuit current. Synergetic effects were observed when NMBI and GSCN were used together in the gel electrolyte. In the second part, various weight percentages of multiwalled carbon nanotubes (MWCNTs) were added to observe the cell performance. DSSCs fabricated with the optimum weight percentage (1 wt%) of MWCNT achieved a maximum conversion efficiency of 4.34%, an open circuit voltage (Voc) of 0.803 V, short circuit current density (Jsc) of 9.54 mA cm–2 and fill factor (FF) of 56.59%. Here we reported the novel ragi starch-based gel electrolytes for DSSC application along with the effect of different additives, such as GSCN, NMBI, and various weight percentages of MWCNTs incorporated into the gel electrolyte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Ramashia S E, Gwata E T, Meddows-Taylor S, Anyasi T A and Jideani A I O 2018 Food Res. Int. 104 110

    Article  CAS  Google Scholar 

  2. Mohan B H, Anitha G, Malleshi N G and Tharanathan R N 2005 Carbohydrate Polym. 59 43

    Article  CAS  Google Scholar 

  3. Gopalan C, Ramasastri B V and Balasubramanian S C 1971 Nutritive value of Indian foods Hyderabad: Indian Council of Medical Research p 27

  4. Chethan S, Dharmesh M S and Malleshi N G 2008 16 10085

  5. Wang Y, Chen K S, Mishler J, Cho S C and Adroher X C 2011 Appl. Energy 88 981

    Article  CAS  Google Scholar 

  6. Manuel Stephan A 2006 Eur. Polym. J. 42 21

    Article  CAS  Google Scholar 

  7. Ozer S, Javorniczky J and Angell C A 2002 J. Electrochem. Soc. 149 A87

    Article  CAS  Google Scholar 

  8. Grätzel M 2003 J. Photochem. Photobiol. C: Photochem. Rev. 4 145

    Article  Google Scholar 

  9. Xue Z, He D and Xie X 2015 J. Mater. Chem. A 3 19218

    Article  CAS  Google Scholar 

  10. Steinbuchel and Alexander 2003 Biopolymers (Weinheim: Wiley-VCH) p 10

  11. Angellier H, Choisnard L, Molina-Boisseau S, Ozil P and Dufresne A 2004 Biomacromolecules 5 1545

  12. Wu Y, Lin Q, Cui T and Xiao H 2014 Int. J. Food Properties 17 2344

    Article  Google Scholar 

  13. Nazeeruddin M K, Kay A, Rodicio I, Humphry-Baker R, Mueller E, Liska P et al 1993 J. Am. Chem. Soc. 115 6382

    Article  CAS  Google Scholar 

  14. Huang S Y, Schlichthorl G, Nozik A J, Grätzel M and Frank A 1997 J. Phys. Chem. B 101 2576

  15. Schlichthorl G, Huang S Y, Sprague J and Frank A J 1997 J. Phys. Chem. B 101 8141

    Article  Google Scholar 

  16. Nakade S, Kanzaki T, Kubo W, Kitamura T, Wada Y and Yanagida S 2005 J. Phys. Chem. B 109 3480

    Article  CAS  Google Scholar 

  17. Boschloo G, Haggman L and Hagfeldt A 2006 J. Phys. Chem. B 110 13144

    Article  CAS  Google Scholar 

  18. Gratzel M 2004 J. Photochem. Photobiol. A: Chem. 164 3

    Article  CAS  Google Scholar 

  19. Stathatos E, Lianos P, Zakeeruddin S M, Liska P and Grätzel M A 2003 Chem. Mater. 15 1825

    Article  CAS  Google Scholar 

  20. Boschloo G, Lindstrom J, Magnusson E, Holmberg A and Hagfeldt A 2002 J. Photochem. Photobiol. A 148 11

    Article  CAS  Google Scholar 

  21. Greijer-Agrell H, Lindgren J and Hagfeldt A 2004 J. Photochem. Photobiol. A 164 23

    Article  CAS  Google Scholar 

  22. Kusama H and Arakawa H J 2004 J. Photochem. Photobiol. A 162 441

    Article  CAS  Google Scholar 

  23. Zhang C G, Dai J, Huo Z P, Pan X, Hu L H, Kong F T et al 2008 Electrochim. Acta 53 5503

    Article  CAS  Google Scholar 

  24. Yu Z, Gorlov M, Boschloo G and Kloo L 2010 J. Phys. Chem. C 114 22330

    Article  Google Scholar 

  25. Shaheer Akhtar M, Park J-G, Lee H-C, Lee S-K and Yang O-B 2010 Electrochim. Acta 55 2418

    CAS  Google Scholar 

  26. Vasantha Kumar S, George J and Sajeevkumar V A 2018 J. Polym. Environ. 26 7

  27. Dharmaraj U, Parameswara P, Somashekar R and Malleshi N G 2014 J. Food Sci. Technol. 51 494

  28. Balasubramanian S, Sharma R, Kaur J and Bhardwaj N 2011 J. Food Sci. Eng. 1 339

    CAS  Google Scholar 

Download references

Acknowledgements

We are thankful to the Indian Nanoelectronics User Program (INUP), IISc, Bengaluru, for their characterization support. This study was supported by the Vision Group of Science & Technology (VGST), Karnataka.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K C Yogananda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yogananda, K.C., Ramasamy, E., Vasantha Kumar, S. et al. Ragi (finger millet) starch-based gel electrolytes for dye-sensitized solar cell application. Bull Mater Sci 44, 211 (2021). https://doi.org/10.1007/s12034-021-02508-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-021-02508-0

Keywords

Navigation