Skip to main content
Log in

Some properties of LiInSi half-Heusler alloy via density functional theory

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

In this study, structural, electronic, elastic and dynamic properties for LiInSi in the half-Heusler structure were analysed with the generalized gradient approximation using the density functional theory. The results obtained are compatible with the structural and electronic properties in literature. In addition to the results related to electronic properties in literature, cohesive energy and formation energy values were calculated. These values were found to be 10.333 and −0.884 eV, respectively. Elastic constants, bulk, shear, Young’s moduli, Poisson's coefficient and Zener anisotropy factor values of LiInSi alloy were revealed. In addition, using linear phonon theory, phonon dispersion curve and phonon density of states graph were obtained. It has been calculated that while the LiInSi alloy is dynamically stable in the ground state, it becomes unstable under nearly 615 kbar pressure. Elastic and dynamic properties are presented in literature for the first time. It is expected that these results will be a guide for future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Mehnane H, Bekkouche B, Kacimi S, Hallouche A, Djermouni M and Zaoui A 2012 Superlattices Microstruct. 51 772

    Article  CAS  Google Scholar 

  2. Kieven D, Klenk R, Naghavi S, Felser C and Gruhn T 2010 Phys. Rev. B 81 075208

  3. Casper F, Seshadri R and Felser C 2009 Phys. Status Solidi A 206 1090

    Article  CAS  Google Scholar 

  4. Kandpal H C, Felser C and Seshadri R 2006 J. Phys. D: Appl. Phys. 39 776

    Article  CAS  Google Scholar 

  5. Gruhn T 2010 Phys. Rev. B 82 125210

  6. Kacimi S, Mehnane H and Zaoui A 2014 J. Alloys Compd. 587 451

    Article  CAS  Google Scholar 

  7. Legrain F, Carrete J, van Roekeghem A, Madsen G K H and Mingo N 2018 J. Phys. Chem. B 122 625

    Article  Google Scholar 

  8. de Groot R A, Mueller F M, van Engen P G and Buschow K H J 1983 Phys. Rev. Lett. 50 2024

    Article  Google Scholar 

  9. Roy A, Bennett J W, Rabe K M and Vanderbilt D 2012 Phys. Rev. Lett. 109 037602

  10. Jung D, Koo H J and Whangbo M H 2000 J. Mol. Struct. Theochem. 527 113

    Article  CAS  Google Scholar 

  11. Spina L, Jia Y Z, Ducourant B, Tillard M and Belin C 2003 Z. Kristallogr. 218 740

    Article  CAS  Google Scholar 

  12. Juza R, Langer K and von Benda K 1968 Angew. Chem. Int. Ed. 7 360

    Article  CAS  Google Scholar 

  13. Wood D M, Zunger A and de Groot R 1985 Phys. Rev. B 31 2570

    Article  CAS  Google Scholar 

  14. Yadav M K and Sanyal B 2015 J. Alloys Compd. 622 388

    Article  CAS  Google Scholar 

  15. Damewood L, Busemeyer B, Shaughnessy M, Fong C Y, Yang L H and Fesler C 2015 Phys. Rev. B 91 064409

  16. Hussain M K 2018 Appl. Phys. A 124 343

    Article  Google Scholar 

  17. Ciftci Y O and Evecen M 2018 Phase Transit. 91 1206

    Article  CAS  Google Scholar 

  18. Zhao J, Gao Q, Li L, Xie H, Hu X, Xu C et al 2017 Intermetallics 89 65

    Article  CAS  Google Scholar 

  19. Benazouzi Y, Rozale H, Boukli H M A, Khethir M, Chahed A and Lucache D 2019 Ann. West Univ. Timisoara – Phys. 61 44

  20. Giannozzi S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D et al 2009 J. Phys. Condens. Matter 21 395502

  21. Gonze X, Beuken J M, Caracas R, Detraux F, Fuchs M, Rignanese G M et al 2002 Comput. Mater. Sci. 25 478

    Article  Google Scholar 

  22. Perdew J P, Burke K and Ernzerhof M 1997 Phys. Rev. Lett. 78 1396

    Article  CAS  Google Scholar 

  23. Perdew J P and Zunger A 1981 Phys. Rev. B 23 5048

    Article  CAS  Google Scholar 

  24. Monkhorst H and Pack J D 1976 Phys. Rev. B 13 5188

    Article  Google Scholar 

  25. Kohn W and Sham L J 1965 Phys. Rev. 140 1133

    Google Scholar 

  26. Kokalj A 1999 J. Mol. Graph. Model. 17 176

    Article  CAS  Google Scholar 

  27. Vinet P, Ferrante J, Smith J R and Rose J H 1986 J. Phys. C 19 L467

    Article  CAS  Google Scholar 

  28. Wei X P, Chu Y D, Sun X W, Deng J B and Xing Y Z 2014 Superlattices Microstruct. 74 70

    Article  CAS  Google Scholar 

  29. Paudel R, Kaphle G C, Batouche M and Zhu J 2020 Int. J. Quantum Chem. 120 e26417

  30. Abada A and Marbouh 2020 J. Supercond. Nov. Magn. 33 889

  31. Lan G, Ouyang B and Song J 2015 Acta Mater. 91 304

    Article  CAS  Google Scholar 

  32. Glazer A M 2009 J. Appl. Crystallogr. 42 1194

    Article  CAS  Google Scholar 

  33. Nye J F (ed) 1995 Physical properties of crystals, their representation by tensors and matrices (New York: Oxford University Press)

    Google Scholar 

  34. Mouhat F and Coudert F X 2014 Phys. Rev. B 90 224104

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emel Kilit Dogan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dogan, E.K., Gulebaglan, S.E. Some properties of LiInSi half-Heusler alloy via density functional theory. Bull Mater Sci 44, 208 (2021). https://doi.org/10.1007/s12034-021-02499-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-021-02499-y

Keywords

Navigation