Skip to main content

Advertisement

Log in

Conduction mechanism in rare earth-doped perovskite material through impedance analysis

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Perovskite (PVSK) has been considered as a promising material for electrochemical energy storage devices. In this paper, the conduction mechanism of rare earth europium-doped perovskite material, Pb1−xEux (Zr0.60Ti0.40)1−x/4O3 as an electrode material for solar cell as well as supercapacitor has been studied. The structural and electrical properties were studied at room temperature for different compositions of Eu-doped PVSK, x = 0.00, 0.03, 0.06 and 0.09. Europium-doped PVSK was prepared via solid-state technique in the higher range of temperature. Structural and surface morphologies were done by X-ray diffraction and SEM. The electrical property has been studied via CIS technique at different frequencies. Study of ac conductivity and impedance analysis affirms PVSK as a potential material for the electrode of photo supercapacitor, a device which helps in the conversion of light energy into electrical and which also helps in energy storage mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Bhandari K P, Collier J M, Ellingson R J and Apul D S 2015 Renew. Sust. Energy 47 133

    Article  Google Scholar 

  2. West B, Stuckelberger M, Guthrey H, Chen L, Lai B, Maser J et al 2017 Nano Energy 32 488

    Article  CAS  Google Scholar 

  3. Fahrenbruch L and Bube R H 1983 Fundamental of solar cells (1st edn) (San Diego: Academic Press) p 330

  4. Yan Y, Jiang C S, Wu X Z, Noufi R, Wei S H and Al-Jassim M M 2008 Conf. Rec. IEEE Photovoltaic Spec. Conf. 1

  5. NREL, July 2019, Best Research-Cell Efficiences, https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.20190802.pdf

  6. Snaider J M, Guo Z, Wang V, Yang M, Yuan L, Zhu K et al 2018 ACS Energy Lett. 3 1402

  7. Nozik A J 2002 Nanostructured materials and nanotechnology (Concise edn) Nalwa H S (ed) (San Diego, California: Academic Press) p 183

  8. Conway B E 1999 Electrochemical super capacitors (New York: Plenum Press)

  9. Yan J, Wang Q, Wei T and Fan Z 2014 Adv. Energy Mater. 4 1300816

    Article  CAS  Google Scholar 

  10. Yu Z, Tetard L, Zhai L and Thomas J 2015 Energy Environ. Sci. 8 702

    Article  CAS  Google Scholar 

  11. Huang M, Li F, Dong F, Zhang Y X and Zhang L 2015 J. Mater. Chem. A 3 21380

    Article  CAS  Google Scholar 

  12. Hong J, Yeo I H and Paika W K 2001 J. Electrochem. Soc. 148 156

    Article  Google Scholar 

  13. Mahore R P, Burghate D K and Kondawar S B 2014 Adv. Mater. Lett. 5 400

    Article  CAS  Google Scholar 

  14. Chee W K, Hong N L and Huang N M 2015 Int. J. Energy Res. 39 111

    Article  CAS  Google Scholar 

  15. Wanga H, Linc J and Shena Z X 2016 Adv. Mater. Dev. 1 225

    Google Scholar 

  16. Arslan A and Hür E 2012 Int. J. Electrochem. Sci. 7 12558

    CAS  Google Scholar 

  17. Chen W, Wu Y, Yue Y, Liu J, Zhang W, Yang X et al 2015 Science 350 944

  18. Zhu J, Li H, Zhong L, Xiao P, Xu X, Yang X et al 2014 ACS 4 2917

    CAS  Google Scholar 

  19. Mefford J T, Hardin W G, Dai S, Johnston K P and Stevenson K J 2014 Nat. Mater. 13 726

    Article  CAS  Google Scholar 

  20. Wohlfahrt-Mehrens M, Schenk J, Wilde P M, Abdelmula E, Axmann P and Garche J 2002 J. Power Sources 105 182

    Article  CAS  Google Scholar 

  21. Minh N Q 1993 J. Am. Ceram. Soc. 76 563

    Article  CAS  Google Scholar 

  22. Giordano F, Abate A, Baena J P C, Saliba M, Matsui T, Im S H et al 2016 Nat. Commun. 7 10379

    Article  CAS  Google Scholar 

  23. Kwon U, Kim B-G, Nguyen D C, Park J-H, Ha N Y, Kim S-J et al 2016 Sci. Rep. 6 30759

    Article  CAS  Google Scholar 

  24. Yang G, Wang C, Lei H, Zheng X, Qin P, Xiong L et al 2017 J. Mater. Chem. A 5 1658

    Article  CAS  Google Scholar 

  25. Armin A, Juska G, Philippa B W, Burn P L, Meredith P, White R D et al 2013 Adv. Energy Mater. 3 321

    Article  CAS  Google Scholar 

  26. Bernal S, Blanco G, Calvino J J, Hernández J C, Pérez-Omil J A, Pintado J M et al 2008 J. Alloys Compd. 451 521

    Article  CAS  Google Scholar 

  27. Zarazua I, Han G, Boix P P, Mhaisalkar S, Fabregat-Santiago F, Mora-Seró I et al 2016 J. Phys. Chem. Lett. 7 5105

  28. Yadav P, Tripathi B, Pandey Kumar K 2014 Phys. Chem. Chem. Phys. 16 15469

    Article  CAS  Google Scholar 

  29. Yadav P, Pandey K, Tripathi B, Kumar C M, Srivastava S K, Singh P K et al 2015 Sol. Energy 122 1

    Article  CAS  Google Scholar 

  30. Garland J E, Crain D J and Roy D 2014 Electrochim. Acta 148 62

    Article  CAS  Google Scholar 

  31. Almora O, Aranda C, Mas-Marzá E and Garcia-Belmonte 2016 Appl. Phys. Lett. 109 173903

    Article  CAS  Google Scholar 

  32. Leguy A M A, Frost J M, McMahon A P, Sakai V G, Kockelmann W, Law C et al 2015 Nat. Commun. 6 7124

    Article  Google Scholar 

  33. Monte R D and Kašpar 2005 J. Mater. Chem15 633

  34. Yeste M P, Hernández J C, Bernal S, Blanco G, Calvino J J, Pérez-Omil J A et al 2006 Chem. Mater. 18 2750

    Article  CAS  Google Scholar 

  35. Vidmar P, Fornasiero P, Kašpar J, Gubitosa G and Graziani M 1997 J. Catal. 171 160

    Article  CAS  Google Scholar 

  36. Ikryannikova L N, Aksenov A A, Markaryan G L, Murav’eva G P, Kostyuk B G, Kharlanov A N et al 2001 Appl. Catal. A Gen. 210 225

  37. He H, Dai H X, Wong K W and Au 2003 Appl. Catal. A Gen. 251 61

  38. Ikryannikova L N, Markaryan G L, Kharlanov A N and Lunina E V 2003 Appl. Surf. Sci. 207 100

    Article  CAS  Google Scholar 

  39. Yucai H, Ping Y, Tao L, Wei J and Bing L 2006 J. Rare Earths 24 86

    Article  Google Scholar 

  40. Fan J, Wu X, Yang L and Weng D 2007 Catal. Today 126 303

    Article  CAS  Google Scholar 

  41. Si R, Zhang Y-W, Wang L-M, Li S-J, Lin B-X, Chu W-S et al 2007 J. Phys. Chem. C 111 787

    Article  CAS  Google Scholar 

  42. Li M, Liu Z, Hu Y, Wang M and Li H 2008 J. Rare Earths 26 357

    Article  Google Scholar 

  43. Dong F, Tanabe T, Suda A, Takahashi N, Sobukawa H and Shinjoh H 2008 Chem. Eng. Sci. 63 5020

    Article  CAS  Google Scholar 

  44. Guo J, Shi Z, Wu D, Yin H and Chen Y 2013 J. Mater. Res. 28 887

    Article  CAS  Google Scholar 

  45. Zhao B, Wang Q, Li G and Zhou 2013 J. Environ. Chem. Eng. 1 534

  46. Montini T, Hickey N, Fornasiero P, Graziani M, Bañares M A, Martinez-Huerta M V et al 2005 Chem. Mater. 17 1157

    Article  CAS  Google Scholar 

  47. Zhao M, Shen M and Wang J 2007 J. Catal. 248 258

    Article  CAS  Google Scholar 

  48. Montini T, Bañares M A, Hickey N, Di Monte R, Fornasiero P, Kašpar J et al 2004 Phys. Chem. Chem. Phys. 6 1

    Article  CAS  Google Scholar 

  49. Wall F 2014 Critical metals handbook G Gun (ed) (Hoboken, NJ, USA: John Wiley & Sons) p 312

  50. Goodenough K M, Wall F and Merriman D 2018 Nat. Resour. Res. 27 201

    Article  CAS  Google Scholar 

  51. Shannon R D and Prewitt C T 1969 Acta Crystallogr. B 25 925

    Article  CAS  Google Scholar 

  52. Shannon R D 1976 Sect. A: Cryst. Phys. Diffr. Theor. Gen. Crystallogr. 32 751

    Google Scholar 

  53. Shannon R D and Prewitt C T 1969 Sect. B: Struct. Crystallogr. Cryst. Chem. 25 925

    Article  CAS  Google Scholar 

  54. Goldschmidt V M 1926 Naturwissenschaften 14 477

    Article  CAS  Google Scholar 

  55. Bhalla A S, Guo R Y and Roy R 2000 Mater. Res. Innov. 4 3

    Article  CAS  Google Scholar 

  56. Morris B C, Flavell W R, Mackrodtb W C and Morris M A 1993 J. Mater. Chem. 3 1007

    Article  CAS  Google Scholar 

  57. Thommes M, Kaneko K, Neimark A V, Olivier J P, Rodriguez-Reinoso F, Rouquerol J et al 2015 Pure Appl. Chem. 87 1051

    Article  CAS  Google Scholar 

  58. Ren X, Yang Z, Yang D, Zhang X, Cui D, Liu Y et al 2016 Nanoscale 8 3816

    Article  CAS  Google Scholar 

  59. Li J-J, Ma J-Y, Ge Q-Q, Hu J-S, Wang D and Wan L-J 2015 ACS Appl. Mater. Interfaces 7 28518

    Article  CAS  Google Scholar 

  60. Yun J S, Ho-Baillie A, Huang S, Woo S H, Heo Y, Seidel J et al 2015 J. Phys. Chem. Lett. 6 875

    Article  CAS  Google Scholar 

  61. Pascoe A R, Duffy N W, Scully A D, Huang F and Cheng Y-B 2015 J. Phys. Chem. C 119 4444

    Article  CAS  Google Scholar 

  62. Lvovich V F 2012 Impedance spectroscopy (John Wiley & Sons) p 368

  63. Barsoukov E and Macdonald J R 1995 Impedance spectroscopy: theory, experiment, and applications (3rd edn) (eds) (Wiley) p 2

  64. Froehlich H 1949 Theory of dielectrics; dielectric constant and dielectric loss (Oxford: Oxford University Press)

  65. Jonscher A K 1983 Dielectric relaxation in solids (London: Chelsea Dielectrics Press)

  66. Sacco A 2017 Energy 79 814

    CAS  Google Scholar 

  67. Fabregat-Santiago F, Garcia-Belmonte G, Mora-Sero I and Bisquert J 2011 Phys. Chem. Chem. Phys. 13 9083

    Article  CAS  Google Scholar 

  68. Bisquert J 2003 Phys. Chem. Chem. Phys. 5 5360

    Article  CAS  Google Scholar 

  69. Kern R, Sastrawan R, Ferber J, Stangl R and Luther J 2002 Electrochim. Acta 47 4213

    Article  CAS  Google Scholar 

  70. Goossens A and Schoonman J 1990 J. Electroanal. Chem. Interfacial Electrochem. 289 11

    Article  CAS  Google Scholar 

  71. Hens Z and Gomes W P 1997 J. Electroanal. Chem. 437 77

    Article  CAS  Google Scholar 

  72. Macdonald J R 1990 Electrochim. Acta 35 1483

    Article  CAS  Google Scholar 

  73. Boukamp B A 2004 Solid State Ion 71 454

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajeev Ranjan.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 85 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, S., Khan, M.D.S., Kumar, Y. et al. Conduction mechanism in rare earth-doped perovskite material through impedance analysis. Bull Mater Sci 44, 206 (2021). https://doi.org/10.1007/s12034-021-02489-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-021-02489-0

Keywords

Navigation