Skip to main content
Log in

Supramolecular self-assembly of oligopeptide hybrid films with liquid crystal texture: effects on cell behaviour for vascular grafts

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Tissue-engineered vascular grafts are increasing in popularity in the treatment of cardiovascular disease. However, poor mechanical strength, brittle texture and other defects restrict their extensive application. In the present work, oligopeptide hybrid films were prepared by L-tyrosine-derivative oligopeptide (TEA), polyethylene glycol (PEG) and polyvinyl alcohol (PVA). The films were prepared with different PEG molecular weights and TEA contents. The chemical structures were characterized using Fourier-transform infrared spectroscopy, while the micromorphology and self-assembly behaviour were examined using scanning electron microscopy and differential scanning calorimetry. The mechanical properties of the films were investigated, and the cellular behaviour was observed using polarized optical microscopy. The experimental results indicated that the degree of microphase separation depended on the molecular weight of the PEG and TEA content. The biocompatibility of the films improved as the TEA content increased. The liquid crystalline properties of the TEA affected the cell orientation. The films are expected to be incorporated into applications in the vascular tissue engineering field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Scheme 1
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. Kharazi A Z, Atari M, Vatankhah E and Javanmard S H 2018 Polym. Adv. Technol. 29 3151

    Article  CAS  Google Scholar 

  2. Fioretta E S, von Boehmer L, Motta S E, Lintas V, Hoerstrup S P and Emmert M Y 2019 Exp. Gerontol. 117 1

    Article  CAS  Google Scholar 

  3. Kapadia M R, Popowich D A and Kibbe M R 2008 Circulation 117 1873

    Article  Google Scholar 

  4. Mombini S, Mohammadnejad J, Bakhshandeh B, Narmani A, Nourmohammadi J, Vahdat S et al 2019 Int. J. Biol. Macromol. 140 278

    Article  CAS  Google Scholar 

  5. Nagapudi K, Brinkman W T, Leisen J, Thomas B S, Wright E R, Haller C et al 2005 Macromolecules 38 345

    Article  CAS  Google Scholar 

  6. Huang L, McMillan R A, Apkarian R P, Pourdeyhimi B, Conticello V P and Chaikof E L 2000 Macromolecules 33 2989

    Article  CAS  Google Scholar 

  7. Kumar V A, Caves J M, Haller C A, Dai E and Chaikof E L 2013 Acta Biomater. 9 8067

    Article  CAS  Google Scholar 

  8. Yang B G, Yao F L, Hao T, Fang W, Ye L, Zhang Y et al 2016 Adv. Healthc. Mater. 5 474

    Article  CAS  Google Scholar 

  9. Nagapudi K, Brinkman W T, Leisen J E, Huang L, McMillan R A, Apkarian R P et al 2002 Macromolecules 35 1730

    Article  CAS  Google Scholar 

  10. Nagapudi K, Brinkman W T, Thomas B S, Park J O, Srinivasarao M, Wright E et al 2005 Biomaterials 26 4695

    Article  CAS  Google Scholar 

  11. Jordan S W, Haller C A and Sallach R E 2007 Biomaterials 28 1191

    Article  CAS  Google Scholar 

  12. Beachley V, Katsanevakis E, Zhang N and Wen X 2009 Biomaterials 30 409

    Article  Google Scholar 

  13. Kannan R Y, Salacinski H J and Butler P E 2005 J. Biomed. Mater. Res. Part B 74B 570

    Article  CAS  Google Scholar 

  14. Wissing T B, Haaften E E V, Koch S E, Ippel B D, Kurniawan N A, Bouten C V C et al 2019 Biomater. Sci. 8 1

    Google Scholar 

  15. Wise S G, Byrom M J, Waterhouse A, Bannon P G and Ng M K C 2011 Acta Biomater. Sci. 7 295

    Article  CAS  Google Scholar 

  16. Mital D, Seifalian A M and George H 2011 Eur. J. Cardiothorac. Surg. 2 394

    Google Scholar 

  17. Wu X, Sallach R E, Caves J M, Conticello V P and Chaikof E L 2008 Biomacromolecules 9 1787

    Article  CAS  Google Scholar 

  18. Zhao N, Lv Z R, Ma J, Zhu C W and Li Q 2019 Eur. Polym. J. 110 31

    Article  CAS  Google Scholar 

  19. Wang Y F, Barrera C M, Dauer E A, Gu W Y, Andreopoulos F and Huang C Y C 2017 J. Mech. Behav. Biomed. Mater. 65 657

    Article  CAS  Google Scholar 

  20. Abbasian M, Massoumi B, Mohammad-Rezaei R, Samadian H and Jaymand M 2019 Int. J. Biol. Macromol. 134 673

    Article  CAS  Google Scholar 

  21. Aslani S, Kabiri M, Kehtari M and Hanaee-Ahvaz H 2019 J. Cell. Physiol. 234 16080

    Article  CAS  Google Scholar 

  22. Janairo J I B, Sakaguchi T, Mine K, Kamada R and Sakaguchi K 2018 Protein Pept. Lett. 25 4

    Article  CAS  Google Scholar 

  23. Zhao Y R, Yang W, Chen C X, Wang J Q, Zhang L M and Hu X 2018 Curr. Opin. Colloid Interface Sci. 35 112

    Article  CAS  Google Scholar 

  24. Fioretta E S, Fledderus J O, Burakowska-Meise E A, Baaijens F P T, Verhaar M C and Bouten C V C 2012 Macromol. Biosci. 12 577

    Article  CAS  Google Scholar 

  25. Fonseca L C, de Paula A J, Martinez D S T and Alves O L 2016 New J. Chem. 40 8060

    Article  CAS  Google Scholar 

  26. Ke X Y, Wei Z H, Wang Y, Shen S, Ren Y, Williford J M et al 2019 Biol. Med. 19 126

    CAS  Google Scholar 

  27. Thangprasert A, Tansakul C, Thuaksubun N and Meesane J 2019 Mater. Des. 183 10

    Article  Google Scholar 

  28. Luo Y L, Miao Y and Xu F 2011 Macromol. Res. 19 1233

    Article  CAS  Google Scholar 

  29. Ariga K, Nishikawa M, Mori T, Takeya J, Shrestha L K and Hill J P 2019 Adv. Mater. 20 51

    CAS  Google Scholar 

  30. Cox H, Cao M W, Xu H, Waigh T A and Lu J R 2019 Biomacromolecules 20 1719

    Article  CAS  Google Scholar 

  31. Amit M, Yuran S, Gazit E, Reches M and Ashkenasy N 2018 Adv. Mater. 30 13

    Article  Google Scholar 

  32. Merkel D R, Shaha R K, Yakacki C M and Frick C P 2019 Polymer 166 148

    Article  CAS  Google Scholar 

  33. Keselowsky B G, Collard D M and García A J 2003 J. Biomed. Mater. Res. Part A 66 247

    Article  Google Scholar 

  34. Ding S, Tian J and Lihua L I 2011 Chinese J. Mater. Res. 25 381

  35. Gunyakov V A, Parshin A M and Shabanov V F 2006 Eur. Phys. J. E 20 467

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This research was supported by the National Natural Science Foundation of China (No. 51202221).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xia Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, C., Ming, P., Zhou, A. et al. Supramolecular self-assembly of oligopeptide hybrid films with liquid crystal texture: effects on cell behaviour for vascular grafts. Bull Mater Sci 44, 197 (2021). https://doi.org/10.1007/s12034-021-02470-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-021-02470-x

Keywords

Navigation