Skip to main content
Log in

Functionalization of single-wall BC2N nanotubes by using amino acid: DFT study

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Density functional theory (DFT) was applied to calculate the interaction of an essential vital amino acid called tryptophan, with (8, 0) zigzag single-wall BC2N nanotubes (BC2NNTs) in both gas and solvent phases. A significant tendency of tryptophan towards BC2NNTs was reported in both media. The aqueous solubility of adsorption of the BC2NNTs/tryptophan complex was studied through solvation energy calculations, indicating that this complex is highly soluble. The functionalization of BC2NNTs, verified by Fourier transform infrared analysis, significantly changes the adsorption energy and quantum molecular descriptors. The adsorption behaviour of BC2NNTs towards tryptophan indicates that the adsorption occurred considerably. According to adsorption energy and releasing possibility, it can be concluded that BC2NNTs can be applied as a tryptophan drug delivery agent in biological media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Cirillo G, Hampel S, Spizzirri U G, Parisi O I, Picci N and Iemma F 2014 BioMed. Res. Int. 825017 1

    Article  Google Scholar 

  2. Lee C H, Singla A and Lee Y 2001 Int. J. Pharm. 221 1

    Article  CAS  Google Scholar 

  3. Friess W 1998 Eur. J. Pharm. Biopharm. 45 113

    Article  CAS  Google Scholar 

  4. Krishnamoorthy N, Yacoub M H and Yaliraki S N 2011 Biomaterials 32 7275

    Article  CAS  Google Scholar 

  5. El-Samaligy M and Rohdewald P 1983 J. Pharm. Pharmacol. 35 537

    Article  CAS  Google Scholar 

  6. Goldberg M, Langer R and Jia X 2007 J. Biomater. Sci. Polym. Ed. 18 241

    Article  CAS  Google Scholar 

  7. Pastorin G, Kostarelos K, Prato M and Bianco A 2005 J. Biomed. Nanotechnol. 1 133

    Article  CAS  Google Scholar 

  8. Moscatello J P, Wang J, Ulmen B, Kayastha V K, Xie M, Mensah S L et al 2007 ECS Trans. 3 1

    Article  CAS  Google Scholar 

  9. Son S J, Bai X and Lee S B 2007 Drug Discov. 12 657

    CAS  Google Scholar 

  10. Golberg D, Bando Y, Tang C and Zhi C 2007 Adv. Mater. 19 2413

    Article  CAS  Google Scholar 

  11. Golberg D, Bando Y, Huang Y, Terao T, Mitome M, Tang C et al 2010 ACS Nano. 4 2979

    Article  CAS  Google Scholar 

  12. Wang J, Lee C H and Yap Y K 2010 Nanoscale 2 2028

    Article  CAS  Google Scholar 

  13. Saha S, Dinadayalane T C, Leszczynska D and Leszczynski J 2013 Chem. Phys. Lett. 565 69

    Article  CAS  Google Scholar 

  14. Yoosefian M, Etminan N, Moghani M Z, Mirzaei S and Abbasi S 2016 Superlattices Microstruct. 98 325

    Article  CAS  Google Scholar 

  15. Lim H, Luo J, Ji W and Lin J 2007 Catal. Today 120 346

    Article  CAS  Google Scholar 

  16. Blase X, Charlier J C, De Vita A and Car R 1997 Appl. Phys. Lett. 70 197

    Article  CAS  Google Scholar 

  17. Baei M T, Peyghan A A and Bagheri Z 2013 Solid State Commun. 159 8

    Article  CAS  Google Scholar 

  18. Peyghan A A, Hadipour N L and Bagheri Z 2013 J. Phys. Chem. C 117 2427

    Article  Google Scholar 

  19. Lei W, Portehault D, Dimova R and Antonietti M 2011 J. Am. Chem. Soc. 133 7121

    Article  CAS  Google Scholar 

  20. Adrian-Scotto M, Antonczak S, Bredehöft J H, Hoffmann S V and Meierhenrich U J 2010 Symmetry 2 935

    Article  CAS  Google Scholar 

  21. Li P, Yin Y L, Li D, Kim S W and Wu G 2007 Br. J. Nutr. 98 237

    Article  CAS  Google Scholar 

  22. Becke A D 1988 Phys. Rev. A 38 3098

    Article  CAS  Google Scholar 

  23. Lee C, Yang W and Parr R G 1988 Phys. Rev. B 37 785

    Article  CAS  Google Scholar 

  24. Schmidt M W, Baldridge K K, Boatz J A, Elbert S T, Gordon M S, Jensen J H et al 1993 J. Comput. Chem. 14 1347

    Article  CAS  Google Scholar 

  25. Chen L, Xu C, Zhang X F and Zhou T 2009 Physica E Low Dimens. Syst. Nanostruct. 41 852

    Article  CAS  Google Scholar 

  26. Beheshtian J, Bagheri Z, Kamfiroozi M and Ahmadi A 2012 J. Mol. Model. 18 2653

    Article  CAS  Google Scholar 

  27. Beheshtian J, Peyghan A A and Bagheri Z 2012 Sens. Actuators B Chem. 171 846

    Article  Google Scholar 

  28. Beheshtian J, Soleymanabadi H, Kamfiroozi M and Ahmadi A 2012 J. Mol. Model. 18 2343

    Article  CAS  Google Scholar 

  29. Boys S F and Bernardi F 1970 Mol. Phys. 19 553

    Article  CAS  Google Scholar 

  30. Shainyan B A, Chipanina N N, Aksamentova T N, Oznobikhina L P, Rosentsveig G N and Rosentsveig I B 2010 Tetrahedron 66 8551

    Article  CAS  Google Scholar 

  31. Sundaraganesan N, Anand B, Meganathan C and Joshua B D 2007 Spectrochim. Acta A 68 561

    Article  CAS  Google Scholar 

  32. Chermette H 1999 J. Comput. Chem. 20 129

    Article  CAS  Google Scholar 

  33. Parr R G 1990 Horizons Quantum Chem. 3 5

  34. Geerlings P, De Proft F and Langenaeker W 2003 Chem. Rev. 103 1793

    Article  CAS  Google Scholar 

  35. Bagaria P, Saha S, Murru S, Kavala V, Patel B K and Roy R K 2009 Phys. Chem. Chem. Phys. 11 8306

    Article  CAS  Google Scholar 

  36. Saha S, Roy R K and Pal S 2010 Phys. Chem. Chem. Phys. 12 9328

    Article  CAS  Google Scholar 

  37. Sarmah A, Saha S, Bagaria P and Roy R K 2012 Chem. Phys. 394 29

    Article  CAS  Google Scholar 

  38. Parr R G, Donnelly R A, Levy M and Palke W E 1978 Chem. Phys. 68 3801

    CAS  Google Scholar 

  39. Parr R G and Pearson R G 1983 J. Am. Chem. Soc. 105 7512

    Article  CAS  Google Scholar 

  40. Parr R G, Szentpaly L V and Liu S 1999 J. Am. Chem. Soc. 121 1922

    Article  CAS  Google Scholar 

  41. Udhayakala P, Rajendiran T and Gunasekaran S 2012 J. Adv. Sci. Res. 3 27

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingyang Su.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, M., Cheng, Y. Functionalization of single-wall BC2N nanotubes by using amino acid: DFT study. Bull Mater Sci 44, 151 (2021). https://doi.org/10.1007/s12034-021-02447-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-021-02447-w

Keywords

Navigation