Skip to main content
Log in

Enhanced electrical and magnetic properties of Sm-doped YCrO3 nanoparticles

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

In the present work, samarium (Sm)-modified YCrO3 nanoparticles have been investigated. The pristine and Sm-doped YCrO3 nanoparticles were synthesized by the sol–gel method. The phase purity and microstructure of the nanoparticles were analysed by X-ray diffraction (XRD), transmission electron microscope (TEM) investigations. To understand the detailed charge transport mechanism, dc and ac electrical properties were measured. The dc electrical conductivity was found to arise due to an adiabatic small polaronic conduction mechanism. On the other hand, the correlated barrier hopping (CBH) conduction model is used to explain the ac conduction process as a function of frequency (20 Hz–1 MHz) and temperature (298–523 K). The dielectric behaviour of the nanoparticles is followed by the modified Cole–Cole model. With the increase in Sm doping, dielectric permittivity and both free charge and space charge conductivity values increase. The shifting of the peak with frequency in ε′ vs. temperature curve, confirmed the existence of a relaxor-like ferroelectric behaviour in the doped YCrO3 nanoparticles. The clear hysteresis loop observed at 80 K delineates the ferromagnetic ordering in the chromate system. The magnetic study suggests that magnetization values increase due to Sm doping. The observation of magneto-dielectric constant in the investigated nanoparticles opens up its potentiality for future spintronics devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Sharma N, Kumar S, Mall A K, Gupta R and Garg A 2017 Mater. Res. Express 4 15702

    Article  Google Scholar 

  2. Kimura T, Goto T, Shintani H, Ishizaka K, Arima T and Tokura Y 2003 Nature 426 55

    Article  CAS  Google Scholar 

  3. Yamaguchi T 1974 J. Phys. Chem. Solids 35 479

    Article  CAS  Google Scholar 

  4. Thamlmaran P, Arunachalam M, Sankarrajan S, Saktipandi K, Sivabharathy M and Samuel E J 2018 J. Phys. Condens. Matter 530 270

    Google Scholar 

  5. Morishita T and Tsushima K 1981 Phys. Rev. B 24 341

    Article  CAS  Google Scholar 

  6. Sahu R J, Serrao C R, Ray N, Waghmare U V and Rao C N R 2007 J. Mater. Chem. 17 42

    Article  CAS  Google Scholar 

  7. Li W, Gong M and Liu X 2014 J. Electrochem. Soc. 161 F551

    Article  CAS  Google Scholar 

  8. Stygar M, Tejchman W, Dabrowa J, Kruk A and Brylewski T 2018 J. Mater. Eng. Perform. 27 3276

    Article  CAS  Google Scholar 

  9. Zhang Bo, Zhao Q, Canag A, Huang X, Hou J, Zhao P et al 2013 J. Alloys Compd. 581 573

  10. Ahmad T and Lone I H 2016 New J. Chem. 40 3216

    Article  CAS  Google Scholar 

  11. Serrao C R, Kundu A K, Krupanidhi S B, Waghmare U V and Rao C N R 2005 Phys. Rev. B: Condens. Matter Mater. Phys. 72 220101

    Article  Google Scholar 

  12. Tiwari S, Saleem M, Mishra A and Varshney D 2019 J. Supercond. Nov. Magn. 32 2521

    Article  CAS  Google Scholar 

  13. Duran A, Verdin C, Escamilla R, Morales F and Escudero R 2012 Mater. Chem. Phys. 133 1011

    Article  CAS  Google Scholar 

  14. Pire R 1999 Phys. Rev. B 60 13470

    Article  Google Scholar 

  15. Granzow T 2004 Phys. Rev. Lett. 92 065701

    Article  CAS  Google Scholar 

  16. Oryshich I V, Poryadchenko N E, Bega N D and Rakitakii A N 1996 Poroshk. Metall. 3 36

    Google Scholar 

  17. Bo Zhang, Zhao Q, Chang A, Li Y, Liu Y and Wu Y 2014 Appl. Phys. Lett. 104 102109

    Article  Google Scholar 

  18. Krishnan S and Kalarikkal N 2013 J. Sol-Gel Sci. Technol. 66 6

    Article  CAS  Google Scholar 

  19. Zhigalkina I A, Nikolaeva T D, Suponitskii Yu L and Polyak B I 1998 Glass Ceram. 55 182

    Article  CAS  Google Scholar 

  20. Looby J T and Katz L 1954 J. Am. Chem. Soc. 76 6029

    Article  CAS  Google Scholar 

  21. Sardar K, Lees M R, Kashtiban R J, Sloan J and Walton R I 2011 Chem. Mater. 23 48

    Article  CAS  Google Scholar 

  22. Pavlov R S, Marza V B and Carda J B 2002 J. Mater. Chem. 12 2825

    Article  CAS  Google Scholar 

  23. Keith M L and Roy R 1954 Am. Mineral. 39 1

    CAS  Google Scholar 

  24. Mukherjee A, Basu S, Manna P K, Yusuf S M and Pal M 2014 J. Mater. Chem. C 2 5885

    Article  CAS  Google Scholar 

  25. Woodward P M, Vogt T, Cox D E, Arulraj A, Rao C N R, Karen P et al 1998 Chem. Mater. 10 3652

    Article  CAS  Google Scholar 

  26. Wang M, Wang T, Song S and Tan M 2017 Materials 10 626

    Article  Google Scholar 

  27. Kosuke N and Kauzuhiko K 2002 J. Am. Ceram. Soc. 56 2550

    Google Scholar 

  28. Zhao Y, Weidner D J, Parise J B and Cox D E 1993 Phys. Earth Planet. Inter. 76 1

    Article  CAS  Google Scholar 

  29. Karmakar A, Majumdar S and Giri S 2011 J. Phys. Condens. Matter 23 495902

    Article  CAS  Google Scholar 

  30. Holstein T 1959 Ann. Phys. 8 343

    Article  CAS  Google Scholar 

  31. Mott N F and Davis E 1979 Electronic process in nanocrystalline materials (Oxford: Clarendon) 2nd edn

  32. Elliott S R 1987 Adv. Phys. 36 135

    Article  CAS  Google Scholar 

  33. Asami K 2002 Prog. Polym. Sci. 27 1617

    Article  CAS  Google Scholar 

  34. Cole K S and Cole R H 1941 J. Chem. Phys. 9 341

    Article  CAS  Google Scholar 

  35. Bergman R 2000 J. Appl. Phys. 88 1356

    Article  CAS  Google Scholar 

  36. Mall A K, Garg A and Gupta R 2017 Mater. Res. Express 4 076104

    Article  Google Scholar 

  37. Duran A, Escamilla R, Escudero R, Morales F and Verdin E 2018 Phys. Rev. Mater. 2 014409

    Article  Google Scholar 

  38. Anithakumari P, Mandal B P, Abdelhamid E, Naik R and Tyagi A K 2016 RSC Adv. 6 16073

    Article  CAS  Google Scholar 

  39. Behera C, Choudhary R N P and Das P R 2017 J. Electron. Mater. 46 6009

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge financial support from the SERB, Department of Science and Technology (DST), Government of India (project no. EMR/2016/004926). We also acknowledge the financial and instrumental support of the Centre of Excellence in Advanced Materials, NIT Durgapur, and the Central Equipment Facilities, S. N. Bose National Centre for Basic Sciences, for providing the magnetic measurement facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soumen Basu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakraborty, P., Rana, D.K. & Basu, S. Enhanced electrical and magnetic properties of Sm-doped YCrO3 nanoparticles. Bull Mater Sci 44, 133 (2021). https://doi.org/10.1007/s12034-021-02440-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-021-02440-3

Keywords

Navigation