Skip to main content

Laser-assisted decoration of carbon nanotubes with palladium nanoparticles for application in electrochemical methanol oxidation

Abstract

Multi-walled carbon nanotubes (MWCNTs) were decorated with palladium nanoparticles (Pd NPs) by laser-ablation of a physical mixture of MWCNTs and Pd NPs without using any reducing agent. The morphology and composition of MWCNT/Pd were analysed by complementary techniques involving Fourier transform infrared spectrometry, transmission electron microscopy, Raman spectroscopy and X-ray photoelectron spectroscopy. Using cyclic voltammetry and chronoamperometry, the electrocatalytic activity and stability of CNT/Pd were evaluated for the electrochemical oxidation of methanol in a basic medium. Comparative investigations were provided with laser-ablated Pd NPs (LA Pd) catalyst concerning catalytic activity and stability. MWCNT/Pd exhibited remarkably high catalytic activity (104.20 mA mg−1) in comparison to the LA Pd catalyst (14.41 mA mg−1). The catalyst was found to exhibit long-term stability even after 3600 s of operation and high resistance towards CO poisoning. It is suggested that the MWCNT/Pd would be valuable as an active electrocatalyst for its commercial applications in direct methanol fuel cells.

Graphic abstract

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Scheme 1
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

References

  1. Hu X, Wang T, Qu X and Dong S 2006 J. Phys. Chem. B 110 853

    CAS  Article  Google Scholar 

  2. Dresselhaus M S, Dresselhaus G, Eklund P C and Rao A M 2007 in: Andreoni W (ed.) The physics of fullerene-based and fullerene-related materials (The Netherlands: Springer) p 331

  3. Guo Z P, Han D M, Wexler D, Zeng R and Liu H K 2008 Electrochim. Acta 53 6410

    CAS  Article  Google Scholar 

  4. Wong E W, Sheehan P E and Lieber C M 1997 Science 277 1971

    CAS  Article  Google Scholar 

  5. Guo D J and Li H L 2005 Carbon 43 1259

    CAS  Article  Google Scholar 

  6. Kim Y-T and Mitani T 2006 J. Catal. 238 394

    CAS  Article  Google Scholar 

  7. Peng F, Zhang L, Wang H, Lv P and Yu H 2005 Carbon 43 2405

    CAS  Article  Google Scholar 

  8. Ramanathan T, Fisher F T, Ruoff R S and Brinson L C 2005 Chem. Mater. 17 1290

    CAS  Article  Google Scholar 

  9. Carrillo A, Swartz J A, Gamba J M, Kane R S, Chakrapani N, Wei B et al 2003 Nano Lett. 3 1437

    CAS  Article  Google Scholar 

  10. Lee K M, Li L and Dai L 2005 J. Am. Chem. Soc. 127 4122

    CAS  Article  Google Scholar 

  11. Baughman R H, Zakhidov A A and De Heer W A 2002 Science 297 787

    CAS  Article  Google Scholar 

  12. Han C-H, Hong D-W, Kim I-J, Gwak J, Han S-D and Singh K C 2007 Sens. Actuators B Chem. 128 320

    CAS  Article  Google Scholar 

  13. Patel K, Kapoor S, Dave D P and Mukherjee T 2006 Res. Chem. Intermed. 32 103

    CAS  Article  Google Scholar 

  14. Chen W, Cai W, Lei Y and Zhang L 2001 Mater. Lett. 50 53

    CAS  Article  Google Scholar 

  15. Wang X, Wang W, Qi Z, Zhao C, Ji H and Zhang Z 2012 Int. J. Hydrog. Energy 37 2579

    CAS  Article  Google Scholar 

  16. He X, Li H, Liu Y, Huang H, Kang Z and Lee S-T 2011 Colloids Surf. B: Biointerfaces 87 326

    CAS  Article  Google Scholar 

  17. Kichambare P D, Chena L C, Wang C T, Mab K J, Wu C T and Chen K H 2001 Mater. Chem. Phys. 72 218

    CAS  Article  Google Scholar 

  18. Yoon B and Wai C M 2005 J. Am. Chem. Soc. 127 17174

    CAS  Article  Google Scholar 

  19. Wildgoose G G, Banks C E and Compton R G 2006 Small 2 182

    CAS  Article  Google Scholar 

  20. Ang L M, Hor T S A, Xu G Q, Tung C H, Zhao S P and Wang J L S 2000 Carbon 38 363

    CAS  Article  Google Scholar 

  21. Chen X, Xia J, Peng J, Li W and Xie S 2000 Compos. Sci. Technol. 60 301

    CAS  Article  Google Scholar 

  22. Kong F Z, Zhang X B, Xiong W Q, Liu F, Huang W Z, Sun Y L et al 2002 Surf. Coat. Technol. 155 33

    CAS  Article  Google Scholar 

  23. Anandan S, Manivel A and Ashokkumar M 2012 Fuel Cells 12 956

    CAS  Article  Google Scholar 

  24. Wu K, Mao X, Liang Y, Chen Y, Tang Y, Zhou Y et al 2012 J. Power Sources 219 258

    CAS  Article  Google Scholar 

  25. Zhuang L, Wang W, Hong F, Yang S, You H, Fang J et al 2012 J. Solid State Chem. 191 239

    CAS  Article  Google Scholar 

  26. Mahapatra S S and Datta J 2011 Int. J. Electrochem. 2011 1

    Article  CAS  Google Scholar 

  27. Yin S, Luo L, Xu C, Zhao Y, Qiang Y and Mu S 2012 J. Power Sources 198 1

    CAS  Article  Google Scholar 

  28. Liu Z, Ling X Y, Guo B, Hong L and Lee J Y 2007 J. Power Sources 167 272

    CAS  Article  Google Scholar 

  29. Zhu H, Liu Y, Shen L, Wei Y, Guo Z, Wang H et al 2010 Int. J. Hydrogen Energy 35 3125

    CAS  Article  Google Scholar 

  30. Luo Y, Xiao Y, Cai G, Zheng Y and Wei K 2012 Fuel 93 533

    CAS  Article  Google Scholar 

  31. Yogesh G K, Shuaib E P and Sastikumar D 2017 Mater. Res. Bull. 91 220

    CAS  Article  Google Scholar 

  32. Yogesh G K, Shuaib E P, Roopmani P, Gumpu M B, Krishnan U M and Sastikumar D 2020 Diam. Relat. Mater. 104 107733

    CAS  Article  Google Scholar 

  33. Chan Y Y, Eng A Y S, Pumera M and Webster R D 2015 ChemElectroChem 2 1003

    CAS  Article  Google Scholar 

  34. Kaliyaraj Selva Kumar A, Zhang Y, Li D and Compton R G 2020 Commun. 121 106867

    CAS  Google Scholar 

  35. Dell’Aglio M, Gaudiuso R, De Pascale O and De Giacomo A 2015 Appl. Surf. Sci. 348 4

    Article  CAS  Google Scholar 

  36. Kumar A, Singh K and Pandey O P 2014 J. Mater. Sci. Technol. 30 112

    CAS  Article  Google Scholar 

  37. Ganash E A, Al-Jabarti G A and Altuwirqi R M 2019 Mater. Res. Expres. 7 015002

    Article  CAS  Google Scholar 

  38. Tabatabaie N and Dorranian D 2016 Appl. Phys. A: Mater. Sci. Process. 122 1

    CAS  Article  Google Scholar 

  39. Mortazavi S Z, Parvin P and Reyhani A 2012 Laser Phys. Lett. 9 547

    CAS  Article  Google Scholar 

  40. Cristoforetti G, Pitzalis E, Spiniello R, Ishak R and Muniz-Miranda M 2011 J. Phys. Chem. C 115 5073

    CAS  Article  Google Scholar 

  41. Abid J P, Wark A W, Brevet P F and Girault H H 2002 Chem. Commun. 7 792

    Article  CAS  Google Scholar 

  42. Li S-S, Yu J, Hu Y-Y, Wang A-J, Chen J-R and Feng J-J 2014 J. Power Sources 254 119

    CAS  Article  Google Scholar 

  43. Mortazavi S Z, Parvin P, Reyhani A, Malekfar R and Mirershadi S 2013 RSC Adv. 3 1397

    CAS  Article  Google Scholar 

  44. Henley S J, Watts P C P, Mureau N and Silva S R P 2008 Appl. Phys. A 93 875

    CAS  Article  Google Scholar 

  45. Zhang Y, Franklin N W, Chen R J and Dai H 2000 Chem. Phys. Lett. 331 35

    CAS  Article  Google Scholar 

  46. Mayedwa N, Mongwaketsi N, Khamlich S, Kaviyarasu K, Matinise N and Maaza M 2018 Appl. Surf. Sci. 446 266

    CAS  Article  Google Scholar 

  47. Ono Y, Kitagawa H and Sendoda Y 1987 J. Japan Pet. Inst. 30 77

    CAS  Article  Google Scholar 

  48. Reddy A L M and Ramaprabhu S 2007 Int. J. Hydrog. Energy 32 3998

    CAS  Article  Google Scholar 

  49. Li Z and Dai S 2005 Chem. Mater. 17 1717

    CAS  Article  Google Scholar 

  50. Rao A M, Richter E, Bandow S, Chase B, Eklund P C, Williams K A et al 1997 Science 275 187

    CAS  Article  Google Scholar 

  51. Panić S, Kukovecz Á and Boskovic G 2018 Appl. Catal. B: Environ. 225 207

    Article  CAS  Google Scholar 

  52. Arulmani S, Krishnamoorthy S, Wu J J and Anandan S 2017 Electroanalysis 29 433

    CAS  Article  Google Scholar 

  53. Bianchini C and Shen P K 2009 Chem. Rev. 109 4183

    CAS  Article  Google Scholar 

  54. Roduner E 2006 Chem. Soc. Rev. 35 583

    CAS  Article  Google Scholar 

  55. Behmenyar G and Akın A N 2014 J. Power Sources 249 239

    CAS  Article  Google Scholar 

  56. Ning L N, Liu X H, Deng M, Huang Z Z, Zhu A M, Zhang Q G et al 2019 Electrochim. Acta 297 206

    CAS  Article  Google Scholar 

  57. Sun Z P, Zhang X G, Liang Y Y and Li H L 2009 Electrochem. Commun. 11 557

    CAS  Article  Google Scholar 

  58. Diao P, Zhang D F, Guo M and Zhang Q 2007 J. Catal. 250 247

    CAS  Article  Google Scholar 

  59. Pan W, Zhang X, Ma H and Zhang J 2008 J. Phys. Chem. C 112 2456

    CAS  Article  Google Scholar 

  60. Shih Z Y, Wang C W, Xu G and Chang H T 2013 J. Mater. Chem. A 1 4773

    CAS  Article  Google Scholar 

  61. Yang G, Zhou Y, Pan H Bin, Zhu C, Fu S, Wai C M et al 2016 Ultrason. Sonochem. 28 192

    CAS  Article  Google Scholar 

  62. Zhu N, Han S, Gan S, Ulstrup J and Chi Q 2013 Adv. Funct. Mater. 23 5297

    CAS  Article  Google Scholar 

  63. Li H, Sun G, Jiang Q, Zhu M, Sun S and Xin Q 2007 J. Power Sources 172 641

    CAS  Article  Google Scholar 

  64. Guo D-J and Li H-L 2004 J. Electroanal. Chem. 573 197

    CAS  Google Scholar 

  65. Wang H J, Yu H, Peng F and Lv P 2006 Electrochem. Commun. 8 499

    CAS  Article  Google Scholar 

  66. Xu C, Cheng L, Shen P and Liu Y 2007 Electrochem. Commun. 9 997

    CAS  Article  Google Scholar 

  67. Samant P V, Fernandes J B, Rangel C M and Figueiredo J L 2005 Catal. Today 102–103 173

    Article  CAS  Google Scholar 

  68. Zhang Y T, Shu H H, Chang G, Ji K, Oyama M, Liu X et al 2013 Electrochim. Acta 109 570

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was monetarily aided by the DST project under the Nanomission scheme of New Delhi, Grant no. SR/NM/NS1024/2016. The authors SA and MA thank MHRD, New Delhi, for approving a scheme for promotion of Academic and Research Collaboration project (SPARC/2018-2019/P236/SL). Ms Reshma thanks MHRD for the PhD fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sambandam Anandan.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1083 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kaimal, R., Yogesh, G.K., Sastikumar, D. et al. Laser-assisted decoration of carbon nanotubes with palladium nanoparticles for application in electrochemical methanol oxidation. Bull Mater Sci 44, 125 (2021). https://doi.org/10.1007/s12034-021-02428-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-021-02428-z

Keywords

  • MWCNT/Pd nanocomposite
  • laser-ablation
  • transmission electron microscopy
  • cyclic voltammetry
  • chronoamperometry