Skip to main content

Advertisement

Log in

Efficiency enhancement in dye-sensitized solar cells with co-sensitized, triple layered photoanode by enhanced light scattering and spectral responses

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

A method for impressive efficiency enhancement in TiO2-based nanoparticle (NP) dye-sensitized solar cells (DSSCs) is demonstrated by using a co-sensitized triple layered photoanode, comprising a nanofibre (NF) layer of TiO2 sandwiched between two TiO2 P25 NP layers. Rose Bengal (RB) and Eosin-Y (EY) dyes are used for the co-sensitization. DSSCs with conventional TiO2 (P25) NP bi-layer photoanode (NP/NP), sensitized with EY, showed an overall power conversion efficiency (η) of 0.89% under the illumination of 100 mW cm–2 (AM 1.5) with iodide-based liquid electrolyte. Whereas DSSCs fabricated with triple layered photoanode (NP/NF/NP) with the same total thickness and sensitized with EY yielded 1.77% efficiency under the same illumination conditions, showing an impressive ~99% enhancement in the overall power conversion efficiency. The DSSCs fabricated with RB-sensitized NP/NP and NP/NF/NP photoanodes showed 0.25 and 0.73% efficiencies, respectively. Upon optimization, DSSCs fabricated with co-sensitized NP/NP bi-layer and NP/NF/NP triple layer photoanodes showed 1.04 and 2.09% efficiencies, respectively, showing again an impressive ~100% enhancement in η due to the co-sensitized triple layer photoanode structure. Increase in the short circuit photocurrent density, UV–visible absorptions measurements, incident photon to current efficiency and electrochemical impedance spectroscopic measurements confirmed that this enhancement is very likely due to the enhanced light harvesting and reduction of recombination of photoelectrons combined with the enhanced spectral responses of the co-sensitized triple layered photoanode.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Hagfeldt A, Boschloo G, Sun L, Kloo L and Pettersson H 2010 Chem. Rev. 110 6595

    Article  CAS  Google Scholar 

  2. Liu Z H, Su X J, Hou G L, Bi S, Xiao Z and Jia H P 2012 J. Power Sources 218 280

    Article  Google Scholar 

  3. Zhu K, Kopidakis N, Neale N R, De-Lagemaat J V and Frank A J 2006 J. Phys. Chem. B 110 25174

    Article  CAS  Google Scholar 

  4. Roy P, Albu A P and Schmuki P 2010 Electrochem. Commun. 12 949

    Article  CAS  Google Scholar 

  5. Huang Q, Zhou G, Fang L, Hu L and Wang Z S 2011 Energy Environ. Sci. 4 2145

    Article  CAS  Google Scholar 

  6. Peter L M 2011 J. Phys. Chem. Lett. 2 1861

    Article  CAS  Google Scholar 

  7. Deepak T G, Anjusree G S, Thomas S, Arun T A and Nair S V 2014 RSC Adv. 4 17615

    Article  CAS  Google Scholar 

  8. Qiu Y C, Chen W and Yang S H 2010 Angew. Chem. Int. Ed. 49 3675

    Article  CAS  Google Scholar 

  9. Yang L, Lin Y, Jia J G, Xiao X R, Li X P and Zhou X W 2008 J. Power Sources 182 370

    Article  CAS  Google Scholar 

  10. Ito S, Murakami T N, Comte P, Liska P, Grätzel C, Nazeeruddin M K et al 2008 Thin Solid Films 516 4613

    Article  CAS  Google Scholar 

  11. Miao Q Q, Wu L Q, Cui J N, Huang M D and Ma T 2011 Adv. Mater. 23 2764

    Article  CAS  Google Scholar 

  12. Son M K, Seo H, Kim S K, Hong N Y, Kim B M, Park S et al 2012 Int. J. Photoenergy 2012 480929

    Google Scholar 

  13. Liu Z H, Su X J, Hou G L L, Bi S, Xiao Z and Jia H P 2012 J. Power Sources 218 280

    Article  CAS  Google Scholar 

  14. Li W, Yang J, Jiang Q, Luo Y, Hou Y, Zhou S et al 2015 J. Power Sources 284 428

    Article  CAS  Google Scholar 

  15. Yang L and Leung W W 2011 Adv. Mater. 23 4559

    Article  CAS  Google Scholar 

  16. Mohammadpour F and Moradi M 2015 Mater. Sci. Semicond. Process. 39 255

    Article  CAS  Google Scholar 

  17. Swathy K S, Abraham P A, Panicker N R, Pramanik N C and Jacob K S 2016 Procedia Technol. 24 767

    Article  Google Scholar 

  18. Dissanayake M A K L, Divarathna H K D W M N, Dissanayake C B, Senadeera G K R, Ekanayake P M P C and Thotawattage C A 2016 J. Photochem. Photobiol. A: Chem. 322 110

    Article  Google Scholar 

  19. Dissanayake M A K L, Jaseetharan T, Senadeera G K R and Thotawatthage C A 2018 Electrochim. Acta 269 172

    Article  CAS  Google Scholar 

  20. Dissanayake M A K L, Sarangika H N M, Senadeera G K R, Divarathna H K D W M N R and Ekanayake E M P C 2017 J. Appl. Electrochem. 47 239

    Google Scholar 

  21. Kumar A S, Balaji D, Kumar J R and Babu S M 2009 Appl. Sci. 1 186

    Google Scholar 

  22. Guo M, Diao P, Ren Y-J, Meng F, Tian H and Cai S M 2005 Sol. Energy Mater. Sol. Cells 88 23

    Article  CAS  Google Scholar 

  23. Chen Y, Zeng Z, Li C, Wang W, Wang X and Zhang B 2005 New J. Chem. 29 773

    Article  CAS  Google Scholar 

  24. Chang H, Kao M-J, Chen T L, Chen C H, Cho K C and Lai X R 2013 Int. J. Photoenergy 1 159502

    Google Scholar 

  25. Kumar K K A and Senthilselvan S J 2019 Mater. Sci. Semicond. Process. 96 104

    Article  CAS  Google Scholar 

  26. Rangel D, Gallegos J C, Vargas S, García F and Rodríguez R 2019 Results Phys. 12 2026

    Article  Google Scholar 

  27. Sundrarajan M, Bama K, Bhavani M, Jegatheeswaran S, Ambika S, Sangili A et al 2017 J. Photochem. Photobiol. B: Biol. 171 117

  28. Chen J, Song J L, Sun X W, Deng W Q, Jiang C Y, Lei W et al 2009 Appl. Phys. Lett. 94 153115

    Article  Google Scholar 

  29. Shen Q, Kobayashi J, Diguna L J and Toyoda T 2008 J. Appl. Phys. 103 084304

    Article  Google Scholar 

  30. Lee Y L, Huang B M and Chien H T 2008 Chem. Mater. 20 6903

    Article  CAS  Google Scholar 

  31. Zaban A, Greenshtein M and Bisquert J 2003 J. ChemPhysChem 4 859

    Article  CAS  Google Scholar 

  32. Hod I, González-Pedro V, Tachan Z, Fabregat-Santiago F, Mora-Sero I, Bisquert J et al 2011 J. Phys. Chem. Lett. 2 3032

  33. Wang Q, Moser J E and Gratzel M 2005 J. Phys. Chem. B 109 14945

    Article  CAS  Google Scholar 

  34. Kim H J, Kim D J, Rao S S, Savariraj A D, Kyoung S K, Son M K et al 2014 Electrochim. Acta 127 427

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G K R Senadeera.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Senadeera, G.K.R., Balasundaram, D., Dissanayake, M.A.K.L. et al. Efficiency enhancement in dye-sensitized solar cells with co-sensitized, triple layered photoanode by enhanced light scattering and spectral responses. Bull Mater Sci 44, 68 (2021). https://doi.org/10.1007/s12034-021-02365-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-021-02365-x

Keywords

Navigation