Skip to main content
Log in

Effect of optical parameters on design of highly reflecting distributed Bragg reflectors based on compound semiconductors for space applications

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Comprehensive model for the design of highly reflecting distributed Bragg reflectors (DBRs) is investigated for spectral band, ranging from ultraviolet to short wavelength infrared (SWIR). The reflectivity calculation is done using thin film multiple reflection technique. The variation of reflectivity as a function of wavelength, number of grown epilayers, angle of incidence and difference between refractive indices of constituent epilayers is examined. The target wavelengths for reflectivity simulation include 1.55 and 1.3 μm for optical communication, 850 and 980 nm for infrared (IR) imaging devices and chip-scale atomic clocks, and 412 and 443 nm for UV light emitting diodes and antireflection coatings for charge-coupled devices and solar cells. The reflectivity values calculated for compound semiconductor DBRs lie between 95 and 99%. It is also inferred that the reflectivity of grown epilayers and broadness of operational spectrum increases with number of epilayers. If DBR stack is grown on lattice mismatched substrate, increment of the reflectivity is found only at single wavelength. As the angle of incidence increases from 0° to 80°, blue shift in reflectance (towards low wavelength) is also observed. The increase in reflectivity is also observed with increase in difference in refractive indices of epilayers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Iga K 2000 IEEE J. Sel. Top. Quantum Electron 6 1201

    Article  CAS  Google Scholar 

  2. Iga K, Kambayashi T and Kitahara C 1978 Proc. 26th Spring Meeting Appl. Phys. Soc. 27p-C-11 63

  3. Goyal P, Gupta S and Kaur G 2016 International conference on electrical, electronics, and optimization techniques (ICEEOT) p 4240

  4. Gibbon T B, Prince K, Pham T T, Tatarczak A, Neumeyr C, Rönnebeg E et al 2011 Opt. Fiber Technol. 17 41

    Article  CAS  Google Scholar 

  5. Schnitzer P, Grabherr M, Jager R, Mederer F, Michalzik R, Wiedenmann D et al 1999 IEEE Photon Technol. Lett. 11 767

    Article  Google Scholar 

  6. Mescher M J, Lutwak R and Varghese M 2005 13th International conference on solid-state sensors, actuators and microsystems 1 311

  7. Knappe S, Schwindt P D D, Shah V, Hollberg L, Kitching J, Liew L et al 2005 Opt. Express 13 1249

    Article  CAS  Google Scholar 

  8. Jewell J L, Scherer A, McCall S L, Lee Y H, Walker S, Harbison J P et al 1989 Electron. Lett. 25 1123

    Article  Google Scholar 

  9. Matsui Y, Schatz R, Pham T, Ling W A, Carey G, Daghighian H M et al 2017 J. Lightwave Technol. 35 397

    Article  CAS  Google Scholar 

  10. Saylan S, Milakovich T, Hadi S A, Nayfeh A, Fitzgerald E A and Dahlem M S 2015 Sol. Energy 122 76

    Article  CAS  Google Scholar 

  11. Knopp K J, Mirin R P, Bertness K A, Silvermanal K L and Christensen D H 2000 J. Appl. Phys. 87 7169

    Article  CAS  Google Scholar 

  12. Welser R E, Sood A K, Hubbard S M, Polly S J and Montgomery K H 2018 36th Space power workshop, Los Angeles

  13. Jiang Y, Keevers M J and Green M A 2018 IEEE 7th World conference on photovoltaic energy conversion (WCPEC), Hawaii, p 901

  14. Wu C J, Kuo C Y, Wang C J, Chang W E, Tsai C L, Lin C F et al 2020 ACS Appl. Nano Mater. 3 399

    Article  CAS  Google Scholar 

  15. Wei B, Han Y, Wang Y, Zhao H, Sun B, Yang X et al 2020 RSC Adv. 10 23341

    Article  CAS  Google Scholar 

  16. Alias M S and Hassan A A M 2004 ECS J. Solid State Sci. Technol. 12 120

    Google Scholar 

  17. Oshikiri M, Koyama F and Iga K 1991 Electron. Lett. 27 2038

    Article  CAS  Google Scholar 

  18. Tanobe H, Oshikiri M, Araki M, Koyama F and Iga K 1992 Proc. IEEE Lasers Electro-Optics Soc, p 532

  19. Michalzik R and Ebeling K J 1993 IEEE J. Quantum Electron. 29 1963

    Article  CAS  Google Scholar 

  20. Streubel K J, Rapp S, Andre J and Wallin J 1996 IEEE Photon. Technol. Lett. 9 1121

    Article  Google Scholar 

  21. Deppe D G, Gerrard N D, Pinzone C J, Dupuis R D and Schubert E F 1990 Appl. Phys. Lett. 56 315

    Article  CAS  Google Scholar 

  22. Born M and Wolf E 1959 Principles of optics 1st edn (London: Pergamon Press Ltd.) p 61

Download references

Acknowledgements

We are thankful to Director, SCL, for his constant help and support for this project. We gratefully acknowledge the fruitful discussions with Mr H S Jatana, Group Head, Device Processing Group, Mr Sudipto Das Gupta, Dy. Head, Optical Process Development Division, Dr Saumya Sengupta, Dr Manish Verma and Dr Sona Das in-understanding concepts of III–V compound semiconductors and optics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahul K Sharma.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, R.K., Gupta, S.D., Jatana, H.S. et al. Effect of optical parameters on design of highly reflecting distributed Bragg reflectors based on compound semiconductors for space applications. Bull Mater Sci 44, 63 (2021). https://doi.org/10.1007/s12034-021-02356-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-021-02356-y

Keywords

Navigation