Skip to main content
Log in

Easy axis orientation dependence of the micromagnetic properties of CrO2 nanodiscs

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Micromagnetic simulations were performed on seven isolated CrO2 discs, each having different orientations of easy axis of magnetization (EAM), but, same 100 nm diameter and 50 nm thickness. The simulation results showed that for an external magnetic field applied along the x-axis, there was no emergence of vortex states corresponding to the relative orientations of the easy axis along [1 0 0], [1 1 0], [1 0 1] and [1 1 1]. Whereas, magnetic vortex states emerged for the relative orientations of the easy axis along [0 1 0], [0 0 1] and [0 1 1]. In another words, for the external field applied along the x-axis, if the relative orientation of the EAM is at θ = 0° or any proximity of 45° (i.e., 0° ≥ θ ≤ 55°), the vortex states did not emerge; but, for any orthogonal orientations (θ = 90°), magnetic vortex states emerged. For the easy axis orientation along [0 1 0] and [0 1 1], out-of-plane vortex states with its core magnetization pointing along the normal to the plane of the disc emerged. However, for the easy axis orientation along [0 0 1], in-plane magnetic vortex states emerged, with its core pointing along the applied magnetic field direction. Further, depending on the relative orientation of the applied magnetic field and its strength, various other magnetization configurations, such as C, S and O states, were obtained in the simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Cullity B D and Graham C D 2009 Introduction to magnetic materials 2nd edn (New Jersey: John Wiley & Sons, Inc.)

    Google Scholar 

  2. Coey J M D 2009 Magnetism and magnetic materials 1st edn (New York: Cambridge University Press)

    Google Scholar 

  3. Usov N A and Peschany S E 1993 J. Magn. Magn. Mater. 118 L290

    Article  Google Scholar 

  4. Antos R, Otani Y C and Shibata J 2008 J. Phys. Soc. Jpn. 77 031004

    Article  Google Scholar 

  5. de Araujo C I L, Alves S G, Buda-Prejbeanu L D and Dieny B 2016 Phys. Rev. Appl. 6 024015

    Article  Google Scholar 

  6. Yamada K, Kasai S, Nakatani Y, Kobayashi K, Kohno H, Thiaville A et al 2007 Nat. Mater. 6 269

    Article  CAS  Google Scholar 

  7. Suess D, Hofmann A B, Satz A, Weitensfelder H, Vogler C, Bruckner F et al 2018 Nat. Electron. 1 362

    Article  Google Scholar 

  8. Skirdkov P N, Popkov A F and Zvezdin K A 2018 Appl. Phys. Lett. 113 242403

    Article  Google Scholar 

  9. Usov N A, Nesmeyanov M S and Tarasov V P 2018 Sci. Rep. 8 1224

    Article  CAS  Google Scholar 

  10. Davide B and Coey J M D 2014 J. Appl. Phys. 115 17D138

    Article  Google Scholar 

  11. Shinjo T, Okuno T, Hassdorf R, Shigeto K and Ono T 2000 Science 289 930

    Article  CAS  Google Scholar 

  12. Schneider M, Hoffmann H, Otto S, Haug Th and Zweck J 2002 J. Appl. Phys. 92 1466

    Article  CAS  Google Scholar 

  13. Jausovec A-V, Xiong G and Cowburn R P 2006 Appl. Phys. Lett. 88 052501

    Article  Google Scholar 

  14. Jonathan K H, Riccardo H and Kirschner J 2003 Phys. Rev. B 67 224432

    Article  Google Scholar 

  15. Jonathan K H, Riccardo H and Kirschner J 2003 Phys. Rev. B 67 064418

    Article  Google Scholar 

  16. Martínez-Pérez M J, Müller B, Lin J, Rodríguez L A, Snoeck E, Kleiner R et al 2020 Nanoscale 12 2587

    Article  Google Scholar 

  17. Balamurugan K, Siva Sankaran P S and Manivannan S 2020 J. Magn. Magn. Mater. 494 165845

    Article  CAS  Google Scholar 

  18. Rameeva B Z, Gupta A, Miao G, Xiao G, Yildiz F, Tagirov L R et al 2005 Tech. Phys. Lett. 31 802

    Article  Google Scholar 

  19. Wysin G M 2010 J. Phys.: Condens. Matter 22 376002

    CAS  Google Scholar 

  20. Depondt P, Lévy J-C S and Mamica S 2013 J. Phys.: Condens. Matter 25 466001

    CAS  Google Scholar 

  21. Leliaert J and Mulkers J 2019 J. Appl. Phys. 125 180901

    Article  Google Scholar 

  22. Donahue M J and Porter D G 1999 OOMMF user’s guide, version 1.0 NISTIR 6376, National Institute of Standards and Technology, Gaithersburg, MD (http://math.nist.gov/oommf).

  23. Wongsam M A and Chantrell R W 1996 J. Magn. Magn. Mater. 152 234

    Article  CAS  Google Scholar 

  24. Qiang Z, Li Y, Nurmikko A V, Miao G X, Xiao G and Gupta A 2004 J. Appl. Phys. 96 7527

    Article  Google Scholar 

  25. Lee R A and Donald D S 1997 Tetrahedron Lett. 38 3857

    Article  CAS  Google Scholar 

  26. Few C S, Williams K R and Wagener K B 2014 Tetrahedron Lett. 55 4452

    Article  CAS  Google Scholar 

  27. Lee R A 1996 U.S. and foreign patents applied for; EP-735014-A1, JP08277231-A

  28. Anger G, Halstenberg J, Hochgeschwender K, Scherhag C, Korallus U, Knopf H et al 2012 Chromium compounds, Ullmann’s encyclopaedia of industrial chemistry 9 157

    Google Scholar 

  29. Schwarz K 1986 J. Phys. F: Met. Phys. 16 L211

    Article  CAS  Google Scholar 

  30. Heinig N F, Jalili H and Leung K T 2007 Appl. Phys. Lett. 91 253102

    Article  Google Scholar 

  31. Xiaojing Z 2010 PhD Thesis (Brown University, Rhode Island)

  32. Singh G P, Ram S, Eckert J and Fecht H-J 2009 J. Phys.: Conf. Ser. 144 012110

    Google Scholar 

Download references

Acknowledgements

We acknowledge the Ministry of Human Resource Development (MHRD), Government of India, for funding under the scheme of National Mission for Higher Education (Rashtriya Uchchattar Shiksha Abhiyan—RUSA 2.0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K Balamurugan.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balamurugan, K., Ravi, G. Easy axis orientation dependence of the micromagnetic properties of CrO2 nanodiscs. Bull Mater Sci 44, 59 (2021). https://doi.org/10.1007/s12034-021-02351-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-021-02351-3

Keywords

Navigation