Skip to main content

Electrohydrodynamic instability: effect of rheological characteristics on the morphological evolution of liquid crystal–polymer interface

Abstract

Electrohydrodynamic instability, in a polymer–air or polymer–polymer bilayer settings, gives rise to the formation of the ordered micropillars or microwells at the initial planar interface. It is well known that the complex interplay among the controlling parameters, such as the intensity of the electrostatic field, film thickness, interfacial tension and dielectric constants of the layers determine the morphology of the interface. In this report, for the first time, experimentally it is shown that rheological property of the lower polymer layer [here, polydimethylsiloxane (PDMS)] has a significant influence on the morphological evolution. We probe the kinetic time scale of the evolution by inducing fast destabilization of the interface due to the high dielectric contrast between two layers (liquid crystal–PDMS) and reduced interfacial tension. At this time scale, it was demonstrated that micropillars are formed for thin viscoelastic ‘soft’ PDMS film, whereas microwells were observed for viscoelastic ‘hard’ film in similar settings. A transition from micropillar to microwell was observed for viscoelastic ‘soft’ film when the thickness of the film increased from \({\sim } 4\) to \(11\,\upmu \hbox {m}\). Based on this observation, by controlling the rheological properties, different patterns were developed from similar templated PDMS substrates.

Graphic Abstract

 

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Jose B, McCluskey P, Gilmartin N, Somers M, Kenny D, Ricco A J et al  2016 Langmuir 32 2820

    CAS  Google Scholar 

  2. Shivapooja P, Wang Q, Orihuela B, Rittschof D, López G P and Zhao X 2013 Adv. Mater. 25 1430

    CAS  Google Scholar 

  3. Burn P L, Kraft A, Baigent D R, Bradley D D C, Brown A R, Friend R H et al 1993 J. Am. Chem. Soc. 115 10117

    CAS  Google Scholar 

  4. Salleo A, Wong W S, Chabinyc M L, Paul K E and Street R A 2005 Adv. Funct. Mater. 15 1105

    CAS  Google Scholar 

  5. Forrest S R 2004 Nature 428 911

    CAS  Google Scholar 

  6. Lee J Y, Hong B H, Kim W Y, Min S K, Kim Y, Jouravle M V et al 2009 Nature 460 498

    CAS  Google Scholar 

  7. Verma A and Sharma A 2010 Adv. Mater. 22 5306

    CAS  Google Scholar 

  8. Kabir A R, Inoue D, Kishimoto Y, Hotta J, Sasaki K, Kitamura N et al 2015 Polym. J. 47 564

    CAS  Google Scholar 

  9. Nghe P, Terriac E, Schneider M, Li Z Z, Cloitre M, Abecassis B et al 2011 Lab Chip 11 788

    CAS  Google Scholar 

  10. Guo L J 2007 Adv. Mater. 19 495

    CAS  Google Scholar 

  11. Qin D, Xia Y and Whitesides G M 2010 Nat. Protoc. 5 491

    CAS  Google Scholar 

  12. Kong J, Chapline M G and Dai H 2001 Adv. Mater. 13 1386

  13. Suh K-Y, Park M C and Kim P 2009 Adv. Funct. Mater.19 2699

    CAS  Google Scholar 

  14. Mukherjee R and Sharma A 2015 Soft Matter 11 8717

    CAS  Google Scholar 

  15. Swan J W 1897 Proc. R Soc. London 62 38

    Google Scholar 

  16. Cressman P J 1963 J. Appl. Phys. 34 2327

    Google Scholar 

  17. Chou S Y, Zhuang L and Guo L 1999 Appl. Phys. Lett. 75 1004

    CAS  Google Scholar 

  18. Chou S Y and Zhuang L 1999 J. Vac. Sci. Technol. B: Microelectron. Nanom. Struct. 17 3197

    CAS  Google Scholar 

  19. Schaffer E, Thurn-albrecht T, Russell T P and Ullrich S 2000 Nature 403 874

    CAS  Google Scholar 

  20. Herminghaus S 1999 Phys. Rev. Lett. 83 2359

    CAS  Google Scholar 

  21. Morariu M D, Voicu N E, Schäffer E, Lin Z, Russell T P and Steiner U 2003 Nat. Mater. 2 48

    CAS  Google Scholar 

  22. Xiang H, Lin Y and Russell T P 2004 Macromolecules37 5358

    CAS  Google Scholar 

  23. Dickey M D, Gupta S, Leach K A, Collister E, Willson C G and Russell T P 2006 Langmuir 22 4315

    CAS  Google Scholar 

  24. Lin Z, Kerle T, Russell T P, Schäffer E and Steiner U 2002 Macromolecules 35 3971

    CAS  Google Scholar 

  25. Arun N, Sharma A, Shenoy V B and Narayan K S 2006 Adv. Mater. 18 660

    CAS  Google Scholar 

  26. Arun N, Sarkar J, Sharma A, Shenoy V B and Narayan K S 2007 J. Adhes. 83 513

    CAS  Google Scholar 

  27. Pattader P S G, Banerjee I, Sharma A and Bandyopadhyay D 2011 Adv. Funct. Mater. 21 324

    CAS  Google Scholar 

  28. Harkema S and Steiner U 2005 Adv. Funct. Mater. 15 2016

    CAS  Google Scholar 

  29. Shankar V and Sharma A 2004 J. Colloid Interface Sci. 274 294

    CAS  Google Scholar 

  30. Verma R, Sharma A, Kargupta K and Bhaumik J 2005 Langmuir 21 3710

    CAS  Google Scholar 

  31. Pease III L F and Russel W B 2006 J. Chem. Phys. 125 184716

    Google Scholar 

  32. Sarkar J and Sharma A 2008 Phys. Rev. E 77 031604

    Google Scholar 

  33. Craster R V and Matar O K 2005 Phys. Fluids 17 032104

    Google Scholar 

  34. Bandyopadhyay D, Sharma A, Thiele U and Reddy D S 2009 Langmuir 25 9108

    CAS  Google Scholar 

  35. Reddy P D S, Bandyopadhyay D and Sharma A 2012 J. Phys. Chem. C 116 22847

    CAS  Google Scholar 

  36. Nase J and Lindner A 2008 Phys. Rev. Lett. 101 074503

    Google Scholar 

  37. Sahoo S, Bhandaru N and Mukherjee R 2019 Soft Matter15 3828

    CAS  Google Scholar 

  38. Arun N, Sharma A, Pattader P S G, Banerjee I, Dixit H M and Narayan K S 2009 Phys. Rev. Lett. 102 254502

    CAS  Google Scholar 

  39. Lin Z, Kerle T and Russell T P 2002 Macromolecules 35 6255

    CAS  Google Scholar 

  40. Wu N and Russel W B 2006 Ind. Eng. Chem. Res. 45 5455

    CAS  Google Scholar 

  41. Roy P, Mukherjee R, Bandyopadhyay D and Gooh Pattader P S 2019 Nanoscale 11 16523

    Article  CAS  Google Scholar 

  42. Rai P K, Denn M M and Maldarelli C 2003 Langmuir19 7370

  43. Chae S, Lee C, Lee H, Kim T and Kang Y J 2009 Lab Chip9 1957

    Google Scholar 

  44. Blinov L M 2011 Structure and properties of liquid crystals (Dordrecht, Netherland: Springer, Berlin)

  45. Dey R, Ghosh U U, Chakraborty S and Das Gupta S 2015 Langmuir 31 11269

    CAS  Google Scholar 

  46. Mukherjee R and Sharma A 2012 ACS Appl. Mater. Interfaces4 355

    CAS  Google Scholar 

  47. Roy D, Pandey K, Banik M, Mukherjee R and Basu S 2019 Proc. R. Soc. A: Math. Phys. Eng. Sci. 475 20190260

    Google Scholar 

  48. Honda T, Miyazaki M, Nakamura H and Maeda H 2005 Lab Chip 5 812

    Google Scholar 

  49. Freedericksz V and Zolina V 1933 Trans. Faraday Soc.140 919

    Google Scholar 

  50. de Gennes P-G and Prost J 1995 The physics of liquid crystals 2nd edn (USA: Oxford University Press)

    Google Scholar 

  51. Dhara P, Bhandaru N, Das A and Mukherjee R 2018 Sci. Rep.8 7169

    Google Scholar 

  52. Xia Y, Lee E, Hu H, Gharbi M A, Beller D A, Fleischmann E-K et al 2016 ACS Appl. Mater. Interfaces 8 12466

    CAS  Google Scholar 

  53. Dreyfus-Lambez H, Stoenescu D, Dozov I and Martinot-Lagarde P 2000 Mol. Cryst. Liq. Cryst. Sci. Technol. A: Mol. Cryst. Liq. Cryst. 352 19

    CAS  Google Scholar 

  54. Srivastava S, Reddy P D S, Wang C, Bandyopadhyay D and Sharma A 2010 J. Chem. Phys. 132 174703

    Google Scholar 

  55. Gooh Pattader P S and Chaudhury M K 2012 Eur. Phys. J. E: Soft Matter 35 67

    CAS  Google Scholar 

  56. Carmeli B and Nitzan A 1983 J. Chem. Phys. 79 393

    CAS  Google Scholar 

  57. Hänggi P, Talkner P and Borkovec M 1990 Rev. Mod. Phys.62 251

    Google Scholar 

  58. Chaudhury M K and Gooh Pattader P S 2013 Eur. Phys. J. E36 15

    Google Scholar 

  59. Chaudhury M K and Gooh Pattader P S 2012 Eur. Phys. J. E35 131

    Google Scholar 

  60. Bhandaru N, Sharma A and Mukherjee R 2016 ACS Appl. Mater. Interfaces 9 19409

    Google Scholar 

Download references

Acknowledgements

PSGP thanks DST SERB, Grant No. ECR/2015/000447 and MeitY, Grant No. 5(9)/2012-NANO for financial aids. PR acknowledges the support from Ministry of Human Resource Development (MHRD), Govt. of India and Centre for Excellence in Nanoelectronics & Theranostic Devices, IIT Guwahati, for providing the instrumentation facilities to accomplish this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Partho Sarathi Gooh Pattader.

Ethics declarations

Author contributions

All the authors designed the experiment. PR performed the experiments. The analysis of the result and the manuscript was written through the contributions from all the authors. All authors have given their approval to the final version of the manuscript.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (docx 274 KB)

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, P., Gooh Pattader, P.S. Electrohydrodynamic instability: effect of rheological characteristics on the morphological evolution of liquid crystal–polymer interface. Bull Mater Sci 43, 169 (2020). https://doi.org/10.1007/s12034-020-2073-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-020-2073-0

Keywords