Abstract
Electrohydrodynamic instability, in a polymer–air or polymer–polymer bilayer settings, gives rise to the formation of the ordered micropillars or microwells at the initial planar interface. It is well known that the complex interplay among the controlling parameters, such as the intensity of the electrostatic field, film thickness, interfacial tension and dielectric constants of the layers determine the morphology of the interface. In this report, for the first time, experimentally it is shown that rheological property of the lower polymer layer [here, polydimethylsiloxane (PDMS)] has a significant influence on the morphological evolution. We probe the kinetic time scale of the evolution by inducing fast destabilization of the interface due to the high dielectric contrast between two layers (liquid crystal–PDMS) and reduced interfacial tension. At this time scale, it was demonstrated that micropillars are formed for thin viscoelastic ‘soft’ PDMS film, whereas microwells were observed for viscoelastic ‘hard’ film in similar settings. A transition from micropillar to microwell was observed for viscoelastic ‘soft’ film when the thickness of the film increased from \({\sim } 4\) to \(11\,\upmu \hbox {m}\). Based on this observation, by controlling the rheological properties, different patterns were developed from similar templated PDMS substrates.
Graphic Abstract

This is a preview of subscription content, access via your institution.






References
Jose B, McCluskey P, Gilmartin N, Somers M, Kenny D, Ricco A J et al 2016 Langmuir 32 2820
Shivapooja P, Wang Q, Orihuela B, Rittschof D, López G P and Zhao X 2013 Adv. Mater. 25 1430
Burn P L, Kraft A, Baigent D R, Bradley D D C, Brown A R, Friend R H et al 1993 J. Am. Chem. Soc. 115 10117
Salleo A, Wong W S, Chabinyc M L, Paul K E and Street R A 2005 Adv. Funct. Mater. 15 1105
Forrest S R 2004 Nature 428 911
Lee J Y, Hong B H, Kim W Y, Min S K, Kim Y, Jouravle M V et al 2009 Nature 460 498
Verma A and Sharma A 2010 Adv. Mater. 22 5306
Kabir A R, Inoue D, Kishimoto Y, Hotta J, Sasaki K, Kitamura N et al 2015 Polym. J. 47 564
Nghe P, Terriac E, Schneider M, Li Z Z, Cloitre M, Abecassis B et al 2011 Lab Chip 11 788
Guo L J 2007 Adv. Mater. 19 495
Qin D, Xia Y and Whitesides G M 2010 Nat. Protoc. 5 491
Kong J, Chapline M G and Dai H 2001 Adv. Mater. 13 1386
Suh K-Y, Park M C and Kim P 2009 Adv. Funct. Mater.19 2699
Mukherjee R and Sharma A 2015 Soft Matter 11 8717
Swan J W 1897 Proc. R Soc. London 62 38
Cressman P J 1963 J. Appl. Phys. 34 2327
Chou S Y, Zhuang L and Guo L 1999 Appl. Phys. Lett. 75 1004
Chou S Y and Zhuang L 1999 J. Vac. Sci. Technol. B: Microelectron. Nanom. Struct. 17 3197
Schaffer E, Thurn-albrecht T, Russell T P and Ullrich S 2000 Nature 403 874
Herminghaus S 1999 Phys. Rev. Lett. 83 2359
Morariu M D, Voicu N E, Schäffer E, Lin Z, Russell T P and Steiner U 2003 Nat. Mater. 2 48
Xiang H, Lin Y and Russell T P 2004 Macromolecules37 5358
Dickey M D, Gupta S, Leach K A, Collister E, Willson C G and Russell T P 2006 Langmuir 22 4315
Lin Z, Kerle T, Russell T P, Schäffer E and Steiner U 2002 Macromolecules 35 3971
Arun N, Sharma A, Shenoy V B and Narayan K S 2006 Adv. Mater. 18 660
Arun N, Sarkar J, Sharma A, Shenoy V B and Narayan K S 2007 J. Adhes. 83 513
Pattader P S G, Banerjee I, Sharma A and Bandyopadhyay D 2011 Adv. Funct. Mater. 21 324
Harkema S and Steiner U 2005 Adv. Funct. Mater. 15 2016
Shankar V and Sharma A 2004 J. Colloid Interface Sci. 274 294
Verma R, Sharma A, Kargupta K and Bhaumik J 2005 Langmuir 21 3710
Pease III L F and Russel W B 2006 J. Chem. Phys. 125 184716
Sarkar J and Sharma A 2008 Phys. Rev. E 77 031604
Craster R V and Matar O K 2005 Phys. Fluids 17 032104
Bandyopadhyay D, Sharma A, Thiele U and Reddy D S 2009 Langmuir 25 9108
Reddy P D S, Bandyopadhyay D and Sharma A 2012 J. Phys. Chem. C 116 22847
Nase J and Lindner A 2008 Phys. Rev. Lett. 101 074503
Sahoo S, Bhandaru N and Mukherjee R 2019 Soft Matter15 3828
Arun N, Sharma A, Pattader P S G, Banerjee I, Dixit H M and Narayan K S 2009 Phys. Rev. Lett. 102 254502
Lin Z, Kerle T and Russell T P 2002 Macromolecules 35 6255
Wu N and Russel W B 2006 Ind. Eng. Chem. Res. 45 5455
Roy P, Mukherjee R, Bandyopadhyay D and Gooh Pattader P S 2019 Nanoscale 11 16523
Rai P K, Denn M M and Maldarelli C 2003 Langmuir19 7370
Chae S, Lee C, Lee H, Kim T and Kang Y J 2009 Lab Chip9 1957
Blinov L M 2011 Structure and properties of liquid crystals (Dordrecht, Netherland: Springer, Berlin)
Dey R, Ghosh U U, Chakraborty S and Das Gupta S 2015 Langmuir 31 11269
Mukherjee R and Sharma A 2012 ACS Appl. Mater. Interfaces4 355
Roy D, Pandey K, Banik M, Mukherjee R and Basu S 2019 Proc. R. Soc. A: Math. Phys. Eng. Sci. 475 20190260
Honda T, Miyazaki M, Nakamura H and Maeda H 2005 Lab Chip 5 812
Freedericksz V and Zolina V 1933 Trans. Faraday Soc.140 919
de Gennes P-G and Prost J 1995 The physics of liquid crystals 2nd edn (USA: Oxford University Press)
Dhara P, Bhandaru N, Das A and Mukherjee R 2018 Sci. Rep.8 7169
Xia Y, Lee E, Hu H, Gharbi M A, Beller D A, Fleischmann E-K et al 2016 ACS Appl. Mater. Interfaces 8 12466
Dreyfus-Lambez H, Stoenescu D, Dozov I and Martinot-Lagarde P 2000 Mol. Cryst. Liq. Cryst. Sci. Technol. A: Mol. Cryst. Liq. Cryst. 352 19
Srivastava S, Reddy P D S, Wang C, Bandyopadhyay D and Sharma A 2010 J. Chem. Phys. 132 174703
Gooh Pattader P S and Chaudhury M K 2012 Eur. Phys. J. E: Soft Matter 35 67
Carmeli B and Nitzan A 1983 J. Chem. Phys. 79 393
Hänggi P, Talkner P and Borkovec M 1990 Rev. Mod. Phys.62 251
Chaudhury M K and Gooh Pattader P S 2013 Eur. Phys. J. E36 15
Chaudhury M K and Gooh Pattader P S 2012 Eur. Phys. J. E35 131
Bhandaru N, Sharma A and Mukherjee R 2016 ACS Appl. Mater. Interfaces 9 19409
Acknowledgements
PSGP thanks DST SERB, Grant No. ECR/2015/000447 and MeitY, Grant No. 5(9)/2012-NANO for financial aids. PR acknowledges the support from Ministry of Human Resource Development (MHRD), Govt. of India and Centre for Excellence in Nanoelectronics & Theranostic Devices, IIT Guwahati, for providing the instrumentation facilities to accomplish this work.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Author contributions
All the authors designed the experiment. PR performed the experiments. The analysis of the result and the manuscript was written through the contributions from all the authors. All authors have given their approval to the final version of the manuscript.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Roy, P., Gooh Pattader, P.S. Electrohydrodynamic instability: effect of rheological characteristics on the morphological evolution of liquid crystal–polymer interface. Bull Mater Sci 43, 169 (2020). https://doi.org/10.1007/s12034-020-2073-0
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s12034-020-2073-0