Skip to main content
Log in

Paths to lowering critical point in a two-dimensional order–disorder transition by Au nanoparticle ‘decoration’

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Effect of mixing dodecanethiol-capped Au nanoparticles (AuNPs) on the critical point of the liquid ordered (\(L_{\mathrm{o}}\)) to liquid disordered (\({\textit{L}}_{\mathrm {d}}\)) phase transition of myristic acid (MyA) Langmuir monolayer has been studied through quantitative evaluation of the two-dimensional patterns of AuNP clusters created through de-mixing and observed through Brewster angle microscopy. The critical temperature (\({\textit{T}}_{\mathrm {c}}\)), marked by the emergence of a Bethe lattice-like (BLL) pattern of ‘fingers’ and ‘arms’, was brought down from \(38^{\circ }\hbox {C}\) in pristine MyA monolayers to 28 and \(10^{\circ }\hbox {C}\) for 20 and 40% w/w AuNP concentrations. Analysis of the BLL at the length scales of these ‘fingers’ and ‘arms’ showed that the lowering of \({\textit{T}}_{\mathrm {c}}\) follows two different paths for the two concentrations, through a repulsive force for the lower and an attractive force for the higher concentration at the ‘fingers’ length scale, while at the scale of ‘arms’ the force between NPs is always repulsive. Based on the observations that the repulsive force operates at larger interparticle separation and the attractive one acts at smaller separations, we tentatively assign the first to be a dipolar repulsion and the second to be lipophilic force of quantum mechanical origin. We have also indicated qualitatively how this realignment of forces between nanoparticles can affect the lipophilic force between the hydrocarbon chains of the NP capping and those chains in the monolayer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Nicolis G and Prigogine I 1977 Self organization in non-equilibrium systems (New Jersey: Wiley)

    Google Scholar 

  2. Cross M C and Hohenberg P C 1993 Rev. Mod. Phys. 65 851

    Article  CAS  Google Scholar 

  3. Gollub J P and Langer J S 1999 Rev. Mod. Phys. 71 S396

    Article  Google Scholar 

  4. Bak P 1996 How nature works (New York: Springer)

    Book  Google Scholar 

  5. Barábasi A L and Stanley H E 1995 Fractal concepts in surface growth (Cambridge, England: Cambridge University Press)

  6. Flores A, Corvera-Poiré E, Garza C and Castillo R 2006 J. Phys. Chem. B 110 4824

    Article  CAS  Google Scholar 

  7. Akamatsu S and Rondelez E 1992 Prog. Colloid Polym. Sci. 89 209

  8. Knobler C M and Desai R C 1992 Annu. Rev. Phys. Chem. 43 207

  9. Kaganer V M, Möhwald H and Dutta P 1999 Rev. Mod. Phys. 71 779

    Article  CAS  Google Scholar 

  10. Wang W, Shiwaku T and Hashimoto T 2003 Macromolecules 36 8088

    Article  CAS  Google Scholar 

  11. Hansen C R, Westerlund F, Moth-Poulsen K, Ravindranath R, Valiyaveettil S and Bjornholm T 2008 Langmuir 24 3905

    Article  CAS  Google Scholar 

  12. Hassenkam T, Norgaard K, Iversen L, Kiely C J, Brust M and Bjornholm T 2002 Adv. Mater. 14 1126

    Article  CAS  Google Scholar 

  13. Mogilevsky A, Volinsky R, Dayagi Y, Markovich N and Jelinek R 2010 Langmuir 26 7893

    Article  CAS  Google Scholar 

  14. Mogilevsky A and Jelinek R 2011 Langmuir 27 1260

    Article  CAS  Google Scholar 

  15. Paczesny J, Sozański K, Dzięcielewski I, Żywociński A and Hołyst R 2012 J. Nanopart. Res. 14 1

    Article  Google Scholar 

  16. Watanabe S, Shibata H, Sakamoto F, Azumi R, Sakai H, Abe M et al 2009 J. Mater. Chem. 19 6796

    Article  CAS  Google Scholar 

  17. Choudhuri M and Datta A 2014 J. Nanosci. Nanotechnol. 14 2901

    Article  CAS  Google Scholar 

  18. Choudhuri M, Sekar Iyengar A N, Datta A and Janaki M S 2015 Phys. Rev. E: Stat. Nonlin. Soft Matter Phys. 92 032907

  19. Choudhuri M and Datta A 2016 Soft Matter 12 5867

    Article  Google Scholar 

  20. Choudhuri M and Datta A 2018 J. Phys.: Condens. Matter 30 355002

    Google Scholar 

  21. Choudhuri M and Datta A 2016 Phys. Rev. E 93 042804

    Article  Google Scholar 

  22. Bethe H A 1935 Proc. R. Soc. Lond. A 150 552

    Article  CAS  Google Scholar 

  23. Ostilli M 2012 Physica A 391 3417

    Article  Google Scholar 

  24. Mukherjee S, Das P S, Choudhuri M, Datta A, Ghosh J, Saha B et al 2017 J. Phys. Chem. C 121 21311

    Article  CAS  Google Scholar 

  25. Brust M, Walker M, Bethell D, Schiffrin D J and Whyman R 1994 J. Chem. Soc: Chem. Commun. 801

  26. Hönig D and Möbius D 1991 J. Phys. Chem. 95 4590

    Article  Google Scholar 

  27. Hönig D and Möbius D 1992 Thin Solid Films 210 64

    Article  Google Scholar 

  28. Hénon S and Meunier J 1991 Rev. Sci. Instrum. 62 936

    Article  Google Scholar 

  29. Zhao Y, Wang G C and Lu T M 2001 Experimental methods in the physical sciences (San Diego, USA: Academic Press) vol 37

  30. Lalatonne Y, Richardi J and Peleni M 2004 Nat. Mater. 3 121

    Article  CAS  Google Scholar 

  31. Wang J, Chen S, Cui K, Li D and Chen D 2016 ACS Nano 10 2893

    Article  CAS  Google Scholar 

  32. Talapin D V, Shevchenko E V, Murray C B, Titov A V and Král P 2007 Nano Lett. 7 1213

Download references

Acknowledgements

We would like to thank the Director, Saha of Nuclear Physics for logistics. AD would like to thank the Department of Atomic Energy, India, for the Raja Ramanna Fellowship and Director, CSIR-Central Glass and Ceramic Research Institute, for hosting the Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Datta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choudhuri, M., Datta, A. Paths to lowering critical point in a two-dimensional order–disorder transition by Au nanoparticle ‘decoration’. Bull Mater Sci 43, 179 (2020). https://doi.org/10.1007/s12034-020-2058-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-020-2058-z

Keywords

Navigation