Skip to main content
Log in

Molecular dynamics simulations of a stacked \(\uppi \)-conjugated soft material: binding energy and preferential geometry for self-assembly

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Understanding intermolecular interactions among supramolecular self-assembled organization and identifying the molecular structure relevant to the self-assembly are crucial for designing materials with desired functionalities. Interactions of aromatic rings in a peptide–perylenediimide conjugate (P-1) are investigated using dispersion-corrected density functional theory. The binding energies of fully optimized dimeric P-1 are calculated to identify the most stable conformation of the dimer. We show that the dispersion correction terms have significant contributions to the total energies of the dimers. The combined results from electronic structure calculations and molecular dynamics simulations demonstrate that the stacked dimer with negative inter-planar angle with clock-wise rotation has stronger binding energy than the dimer with positive inter-planar angle. The excess stability of the dimer with clock-wise rotation is attributed to the intra- and inter-molecular \(\uppi \)\(\uppi \) stacking of the side aromatic rings of the dimer facilitated by formation of less number of hydrogen bonds. The stacked P-1 dimer with negative inter-planar angle and stronger binding energy is identified as the building block of a super structure with left-handed helical arrangements. Our calculations will build the first step towards understanding the molecular origin of the stability of a specific super structure of P-1 over the other, as obtained in the experiment relevant to material science and technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Müller-Dethlefs K and Hobza P 2000 Chem. Rev. 100 143

    Google Scholar 

  2. Ebrahimi A, Karimi P, Akher F B, Behazin R and Mostafavi N 2014 Mol. Phys. 112 1047

    CAS  Google Scholar 

  3. Israelachvili J N, Mitchell D J and Ninham B W 1977 Biochim. Biophys. Acta Biomembr. 470 185

    CAS  Google Scholar 

  4. Sinnokrot M and Sherrill C D 2006 J. Phys. Chem. A 110 10656

    CAS  Google Scholar 

  5. Vijay D and Sastry G N 2010 Chem. Phys. Lett. 485 235

    CAS  Google Scholar 

  6. Mahadevi A S and Sastry G N 2016 Chem. Rev. 116 2775

    CAS  Google Scholar 

  7. Meyer E A, Castellano R K and Diederich F 2003 Angew. Chem. Int. Ed. 42 1210

    CAS  Google Scholar 

  8. Guerra C F, Bickelhaupt F M, Snijders J G and Baerends E J 1999 Chem. Eur. J. 5 3581

    CAS  Google Scholar 

  9. Engelkamp H, Middelbeek S and Nolte R J M 1999 Science 284 785

    CAS  Google Scholar 

  10. Würthner F 2004 Chem. Commun. 1564

  11. Ahmed S, Pramanik B, Sankar K N A, Srivastava A, Singh N, Dowari P et al 2017 Sci. Rep. 7 9485

    Google Scholar 

  12. Spillmann C M, Naciri J, Anderson G P, Chen M S and Ratna B R 2009 ACS Nano 3 3214

    CAS  Google Scholar 

  13. Pramanik B, Mondal J H, Singha N, Ahmed S, Mohanty J and Das D 2017 Chem. Phys. Chem. 18 245

    CAS  Google Scholar 

  14. Ahmed S, Sankar K N A, Pramanik B, Mohanta K and Das D 2018 Langmuir 34 8355

    CAS  Google Scholar 

  15. Silva N J, Machado F B C, Lischka H and Aquino A J A 2016 Phys. Chem. Chem. Phys. 18 22300

    CAS  Google Scholar 

  16. Oltean M, Mile G, Vidrighin M, Leopold N and Chis V 2013 Phys. Chem. Chem. Phys. 15 13978

    CAS  Google Scholar 

  17. Huber R G, Margreiter M A, Fuchs J E, von Grafenstein S, Tautermann C S, Liedl K R et al 2014 J. Chem. Inf. Model. 54 1371

    CAS  Google Scholar 

  18. Josh V-W, Ratner M A and Wasielewski M R 2009 J. Am. Chem. Soc. 132 1738

  19. Markegard C B, Mazaheripour A, Jocson J-M, Burke A M, Dickson M N, Gorodetsky A A et al 2015 J. Phys. Chem. B 119 11459

    CAS  Google Scholar 

  20. Xu Z, Lei X, Tu Y, Tan Z-J, Song B and Fang H 2017 Chem. Eur. J. 23 13100

    CAS  Google Scholar 

  21. Hu J, Kuang W, Deng K, Zou W, Huang Y, Wei Z et al 2012 Adv. Funct. Mater. 22 4149

    CAS  Google Scholar 

  22. Aradi B, Hourahine B and Frauenheim T 2007 J. Phys. Chem. A 111 5678

    CAS  Google Scholar 

  23. Koskinen P and Mäkinen V 2009 Comput. Mater. Sci. 47 237

    CAS  Google Scholar 

  24. Antony J, Sure R and Grimme S 2015 Chem. Commun. 51 1764

    CAS  Google Scholar 

  25. Grimme S 2011 Wiley Interdiscip. Rev. Comput. Mol. Sci. 1 211

    CAS  Google Scholar 

  26. Becke A D 1993 J. Chem. Phys. 98 5648

    CAS  Google Scholar 

  27. Petersson G A, Bennett A, Tensfeldt T G, Al-Laham M A and Shirley W A 1988 J. Chem. Phys. 89 2193

    CAS  Google Scholar 

  28. Petersson G A and Al-Laham M A 1991 J. Chem. Phys. 94 6081

    CAS  Google Scholar 

  29. Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    CAS  Google Scholar 

  30. Adamo C and Barone V 1999 J. Chem. Phys. 110 6158

    CAS  Google Scholar 

  31. Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R et al 2009 Gaussian 09, Revision A.2, Wallingford, CT: Gaussian, Inc.

  32. Schüttelkopf A W and van Aalten D M F 2004 Acta Crystallogr. D60 1355

    Google Scholar 

  33. Malde A K, Zuo L, Breeze M, Stroet M, Poger D, Nair P C et al 2011 J. Chem. Theory Comput. 7 4026

    CAS  Google Scholar 

  34. Schmid N, Eichenberger A P, Choutko A, Riniker S, Winger M, Mark A E et al 2001 Eur. Bio-Phys. J. 40 843

    Google Scholar 

  35. Pekka M and Lennart N 2001 J. Chem. Phys. A 105 9954

    Google Scholar 

  36. Leach A R 2001 Molecular modelling: principles and applications (England: Pearson Education Limited Essex)

    Google Scholar 

  37. Bussi G, Donadio D and Parrinello M 2007 J. Chem. Phys. 126 014101

    Google Scholar 

  38. Berendsen H C J, Postma J P M, van Gunsteren W F, DiNola A and Haak J R 1984 J. Chem. Phys. 81 3684

    CAS  Google Scholar 

  39. Ewald P P 1921 Ann. Phys. (Leipzig) 64 253

    Google Scholar 

  40. Abraham M J, van der Spoel D, Lindahl E, Hess B and the GROMACS development team 2018 GROMACS User Manual version

  41. Bekker H, Berendsen H J C, Dijkstra E J, Achterop S, van Drunen R, van der Spoel D et al 1993 in Physics Computing 92 R A de Groot and J Nadrchal (eds) (Singapore: World Scientific)

  42. Berendsen H J C, van der Spoel D and van Drunen R 1995 Comput. Phys. Commun. 91 43

    CAS  Google Scholar 

  43. Lindahl E, Hess B and van der Spoel D 2001 J. Mol. Mod. 7 306

    CAS  Google Scholar 

  44. van der Spoel D, Lindahl E, Hess B, Groenhof G, Mark A E and Berendsen H J 2005 J. Comp. Chem. 26 1701

    Google Scholar 

  45. Hess B, Kutzner C, van der Spoel D and Lindahl E 2008 J. Chem. Theory Comput. 4 435

    CAS  Google Scholar 

  46. Pronk S, Páll S, Schulz R, Larsson P, Bjelkmar P, Apostolov R et al 2013 Bioinformatics 29 845

    CAS  Google Scholar 

  47. Páll S, Abraham M J, Kutzner C, Hess B and Lindahl E 2015 Tackling exascale software challenges in molecular dynamics simulations with GROMACS (Switzerland, London: Springer International Publishing)

  48. Abraham M J, Murtola T, Schulz R, Páll S, Smith J C, Hess B et al 2015 SoftwareX 1–2 19

    Google Scholar 

  49. Grover J R, Walters E A and Hui E T 1987 J. Phys. Chem. 91 3233

    CAS  Google Scholar 

  50. Chen H-C, Hsu C-P, Reek J N H, Williams R M and Brouwer A M 2015 ChemSusChem 8 363

    Google Scholar 

Download references

Acknowledgements

We would like to thank SEED grant IIT-Jodhpur (project number IITJ/SEED/20140016) for providing financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ananya Debnath.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 406 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastava, A., Garg, A., Das, D. et al. Molecular dynamics simulations of a stacked \(\uppi \)-conjugated soft material: binding energy and preferential geometry for self-assembly. Bull Mater Sci 43, 181 (2020). https://doi.org/10.1007/s12034-020-2053-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-020-2053-4

Keywords

Navigation