Skip to main content

Advertisement

Log in

Effect of the photoanode fabrication condition, electrolyte type and illumination type on dye-sensitized solar cells performance

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

The combination of the photoanode fabrication condition, electrolyte type and light source effect on dye-sensitized solar cell (DSSC) performance were investigated. Three different photoanodes (C1, C2 and C3) were used with different fabrication conditions with two different redox concentration electrolytes (30 and 50 mM) for each photoanode. For these six different combinations, DSSC performances were obtained for 12 different situations using two different light sources, AM 1.5 simulated and ultraviolet (UV-365 nm) illumination. It was obtained that the HI30 electrolyte has higher efficiency for UV illumination and the AN50 electrolyte has higher efficiency for AM1.5 simulated illumination. It was also obtained that the C2 cell with double layer immersed in dye solution has higher efficiency for both two illumination types and two electrolytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Sauvage F, Di Fonzo F, Li Bassi A, Casari C S, Russo V, Divitini G et al 2010 Nano Lett. 10 2562

    Article  CAS  Google Scholar 

  2. Akhtar M S, Khan M A, Jeon M S and Yang O-B 2008 Electrochim. Acta 53 7869

    Article  CAS  Google Scholar 

  3. Ramasamy E and Lee J 2010 J. Phys. Chem. C 114 22032

    Article  CAS  Google Scholar 

  4. O’Regan B and Grätzel M 1991 Nature 353 737

    Article  Google Scholar 

  5. Grätzel M 2001 Nature 414 338

    Article  Google Scholar 

  6. Kusumawati Y, Koussi-Daoud S and Pauporté T 2016 J. Photochem. Photobiol. A Chem. 329 54

    Article  CAS  Google Scholar 

  7. Wang P, Klein C, Humphry-Baker R, Zakeeruddin S M and Grätzel M 2005 J. Am. Chem. Soc. 127 808

    Article  CAS  Google Scholar 

  8. Baglio V, Girolamo M, Antonucci V and Aricò A S 2011 Int. J. Electrochem. Sci. 6 3375

    CAS  Google Scholar 

  9. Gledhill S E, Scott B and Gregg B A 2005 J. Mater. Res. 20 3167

    Article  CAS  Google Scholar 

  10. Su’ait M S, Rahman M Y A and Ahmad A 2015 Sol. Energy 115 452

    Article  Google Scholar 

  11. Le Bahers T, Labat F, Pauporté T and Ciofini I 2010 Phys. Chem. Chem. Phys. 12 14710

    Article  Google Scholar 

  12. Dai Q, Menzies D B, MacFarlane D R, Batten S R, Forsyth S, Spiccia L et al 2006 Comptes. Rendus. Chim. 9 617

    Article  CAS  Google Scholar 

  13. Yildiz Z K, Atilgan A, Atli A, Özel K, Altinkaya C and Yildiz A 2019 J. Photochem. Photobiol. A Chem. 368 23

    Article  CAS  Google Scholar 

  14. Atli A, Atilgan A and Yildiz A 2018 Sol. Energy 173 752

    Article  CAS  Google Scholar 

  15. Chen L, Li X, Wang Y, Gao C, Zhang H and Zhao B 2014 J. Power Sources 272 886

    Article  CAS  Google Scholar 

  16. Pradhan A, Sai Kiran M, Kapil G, Hayase S and Pandey S S 2019 Sol. Energy Mater. Sol Cells 195 122

    Article  CAS  Google Scholar 

  17. Zhang H, He B and Tang Q 2016 Mater. Chem. Phys. 173 340

    Article  CAS  Google Scholar 

  18. Wu W Q, Liao J Y, Chen H Y, Yu X Y, Su C Y and Kuang D B 2012 J. Mater. Chem. 22 18057

    Article  CAS  Google Scholar 

  19. Hafez H S, Shenouda S S and Fadel M 2018 Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 192 23

    Article  CAS  Google Scholar 

  20. Çakar S, Güy N, Özacar M and Fındık F 2016 Electrochim. Acta 209 407

    Article  Google Scholar 

  21. Xia J, Masaki N, Jiang K and Yanagida S 2007 J. Photochem. Photobiol. A Chem. 188 120

    Article  CAS  Google Scholar 

  22. dos Santos Junior G A and Nogueira A F 2018 J. Solid State Electrochem. 22 1591

    Article  Google Scholar 

  23. Bari D, Wrachien N, Meneghesso G, Andrea C, Tagliaferro R, Brown T M et al 2013 in IEEE Int. Reliab. Phys. Symp. p 4B.3.1

  24. Ko Y-S, Kim M-H and Kwon Y-U 2008 Bull. Korean Chem. Soc. 29 463

    Article  CAS  Google Scholar 

  25. Nazeeruddin M K, Kay A, Rodicio I, Humphry-Baker R, Mueller E, Liska P et al 1993 J. Am. Chem. Soc. 115 6382

    Article  CAS  Google Scholar 

  26. Huang S Y, Schlichthörl G, Nozik A J, Grätzel M and Frank A J 1997 J. Phys. Chem. B 101 2576

    Article  CAS  Google Scholar 

  27. Amirnasr M, Nazeeruddin M K and Grätzel M 2000 Thermochim. Acta 348 105

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by Düzce University Scientific Research Project (Project Number 2019.05.02.1026). Also we are thankful to Dr Abdullah Yıldız and his research groups for experimental support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muharrem Gökçen.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orhan, E., Gökçen, M. & Taran, S. Effect of the photoanode fabrication condition, electrolyte type and illumination type on dye-sensitized solar cells performance. Bull Mater Sci 44, 60 (2021). https://doi.org/10.1007/s12034-020-02347-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-020-02347-5

Keywords

Navigation