Skip to main content

Advertisement

Log in

Strain-induced structural change and mechanical properties of 1,3,5-triamino-2,4,6-trinitrobenzene probed by neutron diffraction

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

TATB (1,3,5-triamino-2,4,6-trinitrobenzene) is a widely used insensitive high-energy explosive. It is significant to study its structural evolution in order to get a credible understand of its properties and performances. Direct mechanical tests such as hardness tests are useful approaches to get information about its mechanical properties and shed light upon the microstructures. However, due to the poor solubility of TATB to most solvents, it is hard to produce large crystals for such tests. Fortunately, microcosmic approaches such as powder diffraction can reinforce it and has low requirement on samples. In this study, series of in-situ neutron diffraction experiments under different pressures are performed to investigate the structural change and mechanical properties of TATB. The recently reported phase transition at 4 GPa is studied. The microstrains in normal TATB (12–17 µm) are analysed to reveal the information of slip system and transitional process. The lattice parameters and bulk moduli of TATB under different conditions are given. These neutron diffraction results are significant supplement to correlative studies and will help to understand the performances of TATB, such as deformation and phase transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Boddu V M, Viswanath D S, Ghosh T K and Damavarapu R 2010 J. Hazard. Mater. 181 1

    Article  CAS  Google Scholar 

  2. He P, Zhao K, Huang B, Zhang B, Huang Q and Chen T 2018 J. Mater. Sci. 53 4482

    Article  CAS  Google Scholar 

  3. Gallagher H G, Miller J C, Sheen D B, Sherwood J N and Vrcelj R M 2015 Chem. Cent. J. 9 1

    Article  CAS  Google Scholar 

  4. Li H, Li Y, Bai L, Huang S, Xie L, Chen X et al 2019 J. Phys. Chem. C 123 6958

    Article  CAS  Google Scholar 

  5. Cady H H and Larson A C 1965 Acta Crystallogr., Sect. A: Cryst. Phys. Diffr. Theor. Gen. Crystallogr. 18 485

  6. Stevens L L, Velisavljevic N, Hooks D E and Dattelbaum D M 2008 Prop. Explos. Pyrotech. 33 286

    Article  CAS  Google Scholar 

  7. Plisson T, Pineau N, Weck G, Bruneton E, Guignot N and Loubeyre P 2017 J. Appl. Phys. 122 235901

    Article  Google Scholar 

  8. Pravica M, Yulga B, Tkachev S and Liu Z 2009 J. Phys. Chem. A 113 9133

    Article  CAS  Google Scholar 

  9. Bedrov D, Borodin O, Smith G D, Sewell T D, Dattelbaum D M and Stevens L L 2009 J. Chem. Phys. 131 224703

    Article  Google Scholar 

  10. Davidson A J, Dias R P, Dattelbaum D M and Yoo C S 2011 J. Chem. Phys. 135 174507

    Article  Google Scholar 

  11. Sun X, Wang X, Liang W, Gao C and Sui Z 2018 J. Phys. Chem. C 122 15861

    Article  CAS  Google Scholar 

  12. Steele B A, Clarke S M, Kroonblawd M P, Kuo I W, Pagoria P F, Tkachev S N et al 2019 Appl. Phys. Lett. 114 191901

    Article  Google Scholar 

  13. Kohno Y, Mori K, Hiyoshi R I, Takahashi O and Ueda K 2016 Chem. Phys. 472 163

    Article  CAS  Google Scholar 

  14. Herrmann M and Fietzek H 2005 Powder Diffr. 20 105

    Article  CAS  Google Scholar 

  15. Hosseinzadeh L, Baedi J and Zak A K 2014 Bull. Mater. Sci. 37 1147

    Article  CAS  Google Scholar 

  16. Finger L W, Cox D E and Jephcoat A P 1994 J. Appl. Crystallogr. 27 892

    Article  CAS  Google Scholar 

  17. Thompson P and Cox D E 1987 J. Appl. Crystallogr. 20 79

    Article  CAS  Google Scholar 

  18. Sitepu H, Connor B H O and Li D Y 2004 Physica B 350 E577

    Article  CAS  Google Scholar 

  19. Carvajal J R, Diaz M T F and Martinez J L 1991 J. Phys.: Condens. Matter 3 3215

    Google Scholar 

  20. Stephens P W 2013 J. Appl. Crystallogr. 32 281

    Article  Google Scholar 

  21. Halgren T A and Lipscomb W N 1977 Chem. Phys. Lett. 49 225

    Article  CAS  Google Scholar 

  22. Yeager J D, Luscher D J, Vogel S C, Clausen B and Brown D W 2016 Prop. Explos. Pyrotech. 41 514

    Article  CAS  Google Scholar 

  23. Vlasov Y A, Kosolapov V B, Fomicheva L V and Khabarov I P 1998 Combust. Explos. Shock Waves 34 467

    Article  Google Scholar 

Download references

Acknowledgements

Thanks are due to Haijun Yang at Southwest University of Science and Technology, for assistance in TATB-d6 preparation. This work was supported by NSAF (no. U1730244) and Science Challenge Project (no. TZ2016001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Li.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Bai, L., Chen, X. et al. Strain-induced structural change and mechanical properties of 1,3,5-triamino-2,4,6-trinitrobenzene probed by neutron diffraction. Bull Mater Sci 44, 53 (2021). https://doi.org/10.1007/s12034-020-02339-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-020-02339-5

Keywords

Navigation